Model Intervals

Model Intervals This paper summarizes the most important results and features of Modal Interval Analysis. The ground idea of Interval mathematics is that ordinary set-theoretical intervals are the consistent context for numerical computing. However, this interval context presents basic structural and semantic rigidity arising from its set-theoretical foundation. To correct this situation, Modal Interval Analysis defines intervals starting from the identification of real numbers with the sets of predicates they accept or reject. A modal interval is defined as a pair formed by a classical interval (i.e. a set of numbers) and a quantifier, following a similar method to that in which real numbers are associated in pairs having the same absolute value but opposite signs. Two different extensions for a continuous function (called semantic extensions, since both will have a meaning thanks to the important semantic theorems) are defined and their properties are established. The definition of the rational extension, and its relationships with the semantic extensions, it make possible to compute the semantic extensions and to give a logical meaning to the interval results of a rational computations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Loading next page...
 
/lp/springer_journal/model-intervals-zy8Nm7AATd
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1011465930178
Publisher site
See Article on Publisher Site

Abstract

This paper summarizes the most important results and features of Modal Interval Analysis. The ground idea of Interval mathematics is that ordinary set-theoretical intervals are the consistent context for numerical computing. However, this interval context presents basic structural and semantic rigidity arising from its set-theoretical foundation. To correct this situation, Modal Interval Analysis defines intervals starting from the identification of real numbers with the sets of predicates they accept or reject. A modal interval is defined as a pair formed by a classical interval (i.e. a set of numbers) and a quantifier, following a similar method to that in which real numbers are associated in pairs having the same absolute value but opposite signs. Two different extensions for a continuous function (called semantic extensions, since both will have a meaning thanks to the important semantic theorems) are defined and their properties are established. The definition of the rational extension, and its relationships with the semantic extensions, it make possible to compute the semantic extensions and to give a logical meaning to the interval results of a rational computations.

Journal

Reliable ComputingSpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off