Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid

Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application:... The research on microalgal biodiesel is focused not only on getting the highest lipid productivity but also desired quality of lipid. The experiments were initially conducted on flask scale (1L) using acetate carbon source at different concentrations viz. 0.5, 2, 3 and 4 g L−1. The optimum concentration of acetate was considered for further experiments in two airlift photobioreactors (10 L) equipped separately with red and white LED lights. The Feasibility Index (FI) was derived to analyze the scalability of mixotrophic cultivation based on net carbon fixation in biomass per consumption of total organic carbon. The experimental strategy under mixotrophic mode of cultivation lowered the α-linolenic acid content of lipid by 60–80% as compared to autotrophic cultivation for Scenedesmus abundans species and yielded the highest biomass and lipid productivities, 59 ± 2 and 17 ± 1.8 mg L−1 day−1, respectively. The TOC, nitrate, and phosphate reduction rates were 74.6 ± 3.0, 11.5 ± 1.4, 9.6 ± 2.4 mg L−1 day−1, respectively. The significant change was observed in lipid compositions due to the scale, mode of cultivation, and light spectra. As compared to phototrophic cultivation, biodiesel obtained under mixotrophic cultivation only met standard biodiesel properties. The FI data showed that the mixotrophic cultivation was feasible on moderate concentrations of acetate (2–3 g L−1). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid

Loading next page...
 
/lp/springer_journal/mixotrophic-cultivation-of-microalgae-to-enhance-the-quality-of-lipid-qhGSTvGUrJ

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
DOI
10.1007/s00449-017-1888-6
pmid
29285556
Publisher site
See Article on Publisher Site

Abstract

The research on microalgal biodiesel is focused not only on getting the highest lipid productivity but also desired quality of lipid. The experiments were initially conducted on flask scale (1L) using acetate carbon source at different concentrations viz. 0.5, 2, 3 and 4 g L−1. The optimum concentration of acetate was considered for further experiments in two airlift photobioreactors (10 L) equipped separately with red and white LED lights. The Feasibility Index (FI) was derived to analyze the scalability of mixotrophic cultivation based on net carbon fixation in biomass per consumption of total organic carbon. The experimental strategy under mixotrophic mode of cultivation lowered the α-linolenic acid content of lipid by 60–80% as compared to autotrophic cultivation for Scenedesmus abundans species and yielded the highest biomass and lipid productivities, 59 ± 2 and 17 ± 1.8 mg L−1 day−1, respectively. The TOC, nitrate, and phosphate reduction rates were 74.6 ± 3.0, 11.5 ± 1.4, 9.6 ± 2.4 mg L−1 day−1, respectively. The significant change was observed in lipid compositions due to the scale, mode of cultivation, and light spectra. As compared to phototrophic cultivation, biodiesel obtained under mixotrophic cultivation only met standard biodiesel properties. The FI data showed that the mixotrophic cultivation was feasible on moderate concentrations of acetate (2–3 g L−1).

Journal

Bioprocess and Biosystems EngineeringSpringer Journals

Published: Dec 29, 2017

There are no references for this article.