Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid

Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application:... The research on microalgal biodiesel is focused not only on getting the highest lipid productivity but also desired quality of lipid. The experiments were initially conducted on flask scale (1L) using acetate carbon source at different concentrations viz. 0.5, 2, 3 and 4 g L−1. The optimum concentration of acetate was considered for further experiments in two airlift photobioreactors (10 L) equipped separately with red and white LED lights. The Feasibility Index (FI) was derived to analyze the scalability of mixotrophic cultivation based on net carbon fixation in biomass per consumption of total organic carbon. The experimental strategy under mixotrophic mode of cultivation lowered the α-linolenic acid content of lipid by 60–80% as compared to autotrophic cultivation for Scenedesmus abundans species and yielded the highest biomass and lipid productivities, 59 ± 2 and 17 ± 1.8 mg L−1 day−1, respectively. The TOC, nitrate, and phosphate reduction rates were 74.6 ± 3.0, 11.5 ± 1.4, 9.6 ± 2.4 mg L−1 day−1, respectively. The significant change was observed in lipid compositions due to the scale, mode of cultivation, and light spectra. As compared to phototrophic cultivation, biodiesel obtained under mixotrophic cultivation only met standard biodiesel properties. The FI data showed that the mixotrophic cultivation was feasible on moderate concentrations of acetate (2–3 g L−1). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid

Loading next page...
 
/lp/springer_journal/mixotrophic-cultivation-of-microalgae-to-enhance-the-quality-of-lipid-qhGSTvGUrJ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
D.O.I.
10.1007/s00449-017-1888-6
Publisher site
See Article on Publisher Site

Abstract

The research on microalgal biodiesel is focused not only on getting the highest lipid productivity but also desired quality of lipid. The experiments were initially conducted on flask scale (1L) using acetate carbon source at different concentrations viz. 0.5, 2, 3 and 4 g L−1. The optimum concentration of acetate was considered for further experiments in two airlift photobioreactors (10 L) equipped separately with red and white LED lights. The Feasibility Index (FI) was derived to analyze the scalability of mixotrophic cultivation based on net carbon fixation in biomass per consumption of total organic carbon. The experimental strategy under mixotrophic mode of cultivation lowered the α-linolenic acid content of lipid by 60–80% as compared to autotrophic cultivation for Scenedesmus abundans species and yielded the highest biomass and lipid productivities, 59 ± 2 and 17 ± 1.8 mg L−1 day−1, respectively. The TOC, nitrate, and phosphate reduction rates were 74.6 ± 3.0, 11.5 ± 1.4, 9.6 ± 2.4 mg L−1 day−1, respectively. The significant change was observed in lipid compositions due to the scale, mode of cultivation, and light spectra. As compared to phototrophic cultivation, biodiesel obtained under mixotrophic cultivation only met standard biodiesel properties. The FI data showed that the mixotrophic cultivation was feasible on moderate concentrations of acetate (2–3 g L−1).

Journal

Bioprocess and Biosystems EngineeringSpringer Journals

Published: Dec 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off