Mixing by internal waves quantified using combined PIV/PLIF technique

Mixing by internal waves quantified using combined PIV/PLIF technique We present a novel characterization of mixing events associated with the propagation and overturning of internal waves studied, thanks to the simultaneous use of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. This combination of techniques had been developed earlier to provide an access to simultaneous velocity and density fields in two-layer stratified flows with interfacial gravity waves. Here, for the first time, we show how it is possible to implement it quantitatively in the case of a continuously stratified fluid where internal waves propagate in the bulk. We explain in details how the calibration of the PLIF data is performed by an iterative procedure, and we describe the precise spatial and temporal synchronizations of the PIV and PLIF measurements. We then validate the whole procedure by characterizing the triadic resonance instability (TRI) of an internal wave mode. Very interestingly, the combined technique is then applied to a precise measurement of the turbulent diffusivity K t associated with mixing events induced by an internal wave mode. Values up to K t = 15 mm2 s−1 are reached when TRI is present (well above the noise of our measurement, typically 1 mm2 s−1), unambiguously confirming that TRI is a potential pathway to turbulent mixing in stratified flows. This work therefore provides a step on the path to new measurements for internal waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Mixing by internal waves quantified using combined PIV/PLIF technique

Loading next page...
 
/lp/springer_journal/mixing-by-internal-waves-quantified-using-combined-piv-plif-technique-ytIOtBqM4N
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2212-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial