Mixing by internal waves quantified using combined PIV/PLIF technique

Mixing by internal waves quantified using combined PIV/PLIF technique We present a novel characterization of mixing events associated with the propagation and overturning of internal waves studied, thanks to the simultaneous use of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. This combination of techniques had been developed earlier to provide an access to simultaneous velocity and density fields in two-layer stratified flows with interfacial gravity waves. Here, for the first time, we show how it is possible to implement it quantitatively in the case of a continuously stratified fluid where internal waves propagate in the bulk. We explain in details how the calibration of the PLIF data is performed by an iterative procedure, and we describe the precise spatial and temporal synchronizations of the PIV and PLIF measurements. We then validate the whole procedure by characterizing the triadic resonance instability (TRI) of an internal wave mode. Very interestingly, the combined technique is then applied to a precise measurement of the turbulent diffusivity K t associated with mixing events induced by an internal wave mode. Values up to K t = 15 mm2 s−1 are reached when TRI is present (well above the noise of our measurement, typically 1 mm2 s−1), unambiguously confirming that TRI is a potential pathway to turbulent mixing in stratified flows. This work therefore provides a step on the path to new measurements for internal waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Mixing by internal waves quantified using combined PIV/PLIF technique

Loading next page...
 
/lp/springer_journal/mixing-by-internal-waves-quantified-using-combined-piv-plif-technique-ytIOtBqM4N
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2212-y
Publisher site
See Article on Publisher Site

Abstract

We present a novel characterization of mixing events associated with the propagation and overturning of internal waves studied, thanks to the simultaneous use of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. This combination of techniques had been developed earlier to provide an access to simultaneous velocity and density fields in two-layer stratified flows with interfacial gravity waves. Here, for the first time, we show how it is possible to implement it quantitatively in the case of a continuously stratified fluid where internal waves propagate in the bulk. We explain in details how the calibration of the PLIF data is performed by an iterative procedure, and we describe the precise spatial and temporal synchronizations of the PIV and PLIF measurements. We then validate the whole procedure by characterizing the triadic resonance instability (TRI) of an internal wave mode. Very interestingly, the combined technique is then applied to a precise measurement of the turbulent diffusivity K t associated with mixing events induced by an internal wave mode. Values up to K t = 15 mm2 s−1 are reached when TRI is present (well above the noise of our measurement, typically 1 mm2 s−1), unambiguously confirming that TRI is a potential pathway to turbulent mixing in stratified flows. This work therefore provides a step on the path to new measurements for internal waves.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off