In this paper, we introduce a new type of fractional derivative, which we called truncated $${\mathcal {V}}$$ V -fractional derivative, for $$\alpha $$ α -differentiable functions, by means of the six-parameter truncated Mittag–Leffler function. One remarkable characteristic of this new derivative is that it generalizes several different fractional derivatives, recently introduced: conformable fractional derivative, alternative fractional derivative, truncated alternative fractional derivative, M-fractional derivative and truncated M-fractional derivative. This new truncated $${\mathcal {V}}$$ V -fractional derivative satisfies several important properties of the classical derivatives of integer order calculus: linearity, product rule, quotient rule, function composition and the chain rule. Also, as in the case of the Caputo derivative, the derivative of a constant is zero. Since the six parameters Mittag–Leffler function is a generalization of Mittag–Leffler functions of one, two, three, four and five parameters, we were able to extend some of the classical results of the integer-order calculus, namely: Rolle’s theorem, the mean value theorem and its extension. In addition, we present a theorem on the law of exponents for derivatives and as an application we calculate the truncated $${\mathcal {V}}$$ V -fractional derivative of the two-parameter Mittag–Leffler function. Finally, we present the $${\mathcal {V}}$$ V -fractional integral from which, as a natural consequence, new results appear as applications. Specifically, we generalize the inverse property, the fundamental theorem of calculus, a theorem associated with classical integration by parts, and the mean value theorem for integrals. We also calculate the $${\mathcal {V}}$$ V -fractional integral of the two-parameter Mittag–Leffler function. Further, we were able to establish the relation between the truncated $${\mathcal {V}}$$ V -fractional derivative and the truncated $${\mathcal {V}}$$ V -fractional integral and the fractional derivative and fractional integral in the Riemann–Liouville sense when the order parameter $$\alpha $$ α lies between 0 and 1 ( $$0<\alpha <1$$ 0 < α < 1 ).
Mediterranean Journal of Mathematics – Springer Journals
Published: Nov 29, 2017
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue