Mitochondrial Low-Molecular-Weight Heat-Shock Proteins and the Tolerance of Cereal Mitochondria to Hyperthermia

Mitochondrial Low-Molecular-Weight Heat-Shock Proteins and the Tolerance of Cereal Mitochondria... Relationships between the appearance of low-molecular-weight heat-shock proteins (LMW HSPs) in maize, winter wheat, and winter rye mitochondria and the tolerance of the mitochondria to hyperthermia (42°C, 3 h) were studied using one-dimensional SDS-PAGE, immunochemical methods, and polarography. Heat shock inhibited respiration to a greater extent in the wheat and rye than in the maize mitochondria. A single 20-kD LMW HSP was found both inside and on the surface of mitochondria isolated from heat-treated wheat and rye seedlings. After heating maize seedlings, two LMW HSPs (28 and 23 kD) appeared inside the mitochondria, and three proteins (22, 20, and 19 kD) appeared on their surface. We suppose that the latter three proteins play an essential role in the protection of mitochondria from hyperthermic damage. It seems likely that the diversity of the hyperthermia-induced LMW HSPs in plant mitochondria affects their thermal stability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Mitochondrial Low-Molecular-Weight Heat-Shock Proteins and the Tolerance of Cereal Mitochondria to Hyperthermia

Loading next page...
 
/lp/springer_journal/mitochondrial-low-molecular-weight-heat-shock-proteins-and-the-EQEpDoCG8M
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1012516826835
Publisher site
See Article on Publisher Site

Abstract

Relationships between the appearance of low-molecular-weight heat-shock proteins (LMW HSPs) in maize, winter wheat, and winter rye mitochondria and the tolerance of the mitochondria to hyperthermia (42°C, 3 h) were studied using one-dimensional SDS-PAGE, immunochemical methods, and polarography. Heat shock inhibited respiration to a greater extent in the wheat and rye than in the maize mitochondria. A single 20-kD LMW HSP was found both inside and on the surface of mitochondria isolated from heat-treated wheat and rye seedlings. After heating maize seedlings, two LMW HSPs (28 and 23 kD) appeared inside the mitochondria, and three proteins (22, 20, and 19 kD) appeared on their surface. We suppose that the latter three proteins play an essential role in the protection of mitochondria from hyperthermic damage. It seems likely that the diversity of the hyperthermia-induced LMW HSPs in plant mitochondria affects their thermal stability.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off