Mitochondrial DNA sequence variation, demographic history, and population structure of Amur sturgeon Acipenser schrenckii Brandt, 1869

Mitochondrial DNA sequence variation, demographic history, and population structure of Amur... The variability of the mtDNA control region (D-loop) was examined in Amur sturgeon endemic to the Amur River. This species is also classified as critically endangered by the IUCN Red List of Threatened species. Sequencing of 796- to 812-bp fragments of the D-loop in 112 sturgeon collected in the Lower Amur revealed 73 different genotypes. The sample was characterized by a high level of haplotypic (0.976) and nucleotide (0.0194) diversity. The identified haplotypes split into two well-defined monophyletic groups, BG (n = 39) and SM (n = 34), differing (HKY distance) on average by 3.41% of nucleotide positions with an average level of intragroup differences of 0.54 and 1.23%, respectively. Moreover, the haplotypes of the SM groups differed by the presence of a 13–14 bp deletion. Most of the specimens (66 out of 112) carried BG haplotypes. Overall, the pattern of pairwise nucleotide differences and the results of neutrality tests, as well as the results of tests for compliance with the model of sudden demographic expansion or with the model of exponential growth pointed to a past significant increase in the number of Amur sturgeon, which was most clearly manifested in the analysis of data on the BG haplogroup. The constructed Bayesian skyline plots showed that this growth began about 18-16 thousand years ago. At present, the effective size of the strongly reduced (due to overfishing) population of Amur sturgeon may be equal to or even lower than it was before the beginning of this growth during the Last Glacial Maximum. The presence in the mitochondrial gene pool of Amur sturgeon of two haplogroups, their unequal evolutionary dynamics, and, judging by scanty data, their unequal representation in the Russian and Chinese parts of the Amur River basin point to the possible existence of at least two distinct populations of Amur sturgeon in the past. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Mitochondrial DNA sequence variation, demographic history, and population structure of Amur sturgeon Acipenser schrenckii Brandt, 1869

Loading next page...
 
/lp/springer_journal/mitochondrial-dna-sequence-variation-demographic-history-and-XibGYppfFV
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541502012X
Publisher site
See Article on Publisher Site

Abstract

The variability of the mtDNA control region (D-loop) was examined in Amur sturgeon endemic to the Amur River. This species is also classified as critically endangered by the IUCN Red List of Threatened species. Sequencing of 796- to 812-bp fragments of the D-loop in 112 sturgeon collected in the Lower Amur revealed 73 different genotypes. The sample was characterized by a high level of haplotypic (0.976) and nucleotide (0.0194) diversity. The identified haplotypes split into two well-defined monophyletic groups, BG (n = 39) and SM (n = 34), differing (HKY distance) on average by 3.41% of nucleotide positions with an average level of intragroup differences of 0.54 and 1.23%, respectively. Moreover, the haplotypes of the SM groups differed by the presence of a 13–14 bp deletion. Most of the specimens (66 out of 112) carried BG haplotypes. Overall, the pattern of pairwise nucleotide differences and the results of neutrality tests, as well as the results of tests for compliance with the model of sudden demographic expansion or with the model of exponential growth pointed to a past significant increase in the number of Amur sturgeon, which was most clearly manifested in the analysis of data on the BG haplogroup. The constructed Bayesian skyline plots showed that this growth began about 18-16 thousand years ago. At present, the effective size of the strongly reduced (due to overfishing) population of Amur sturgeon may be equal to or even lower than it was before the beginning of this growth during the Last Glacial Maximum. The presence in the mitochondrial gene pool of Amur sturgeon of two haplogroups, their unequal evolutionary dynamics, and, judging by scanty data, their unequal representation in the Russian and Chinese parts of the Amur River basin point to the possible existence of at least two distinct populations of Amur sturgeon in the past.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 6, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off