Mitigation of Cr(VI) toxicity using Pd-nanoparticlesimmobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation

Mitigation of Cr(VI) toxicity using Pd-nanoparticlesimmobilized catalytic reactor (Pd-NICaR)... Catalytic reduction of Cr(VI) to less toxic Cr(III) form using metal nanoparticles is one of the novel approaches adopted to deal with Cr toxicity. In this work, we report the fabrication of a facile, reusable, and robust Pd nanoparticles-immobilized catalytic reactor (Pd-NICaR) system using green, environment-friendly gamma radiolytic, and plasma polymerization processes. A room temperature, RF-powered plasma polymerization process was employed to functionalize a polyethylene–polypropylene (PE–PP) non-woven matrix with epoxy group containing monomer 2,3-epoxypropyl methacrylate (EPMA). EPMA-functionalized PE–PP (EPMA-f-PE–PP) substrate was subsequently used as a template for in situ generation and immobilization of Pd NPs via gamma radiolytic route. The samples were characterized using FTIR, SEM, XPS, and XRF techniques. The catalytic efficacy of Pd-NICaR towards Cr(VI) reduction, in the presence of formic acid (FA) as a reductant, was investigated spectrophotometrically, and reaction parameters were optimized at reaction temperature of 50 °C and [FA]/[Cr(VI)] = 680 to achieve catalytic reduction efficiency of 99.7% within 10 min in batch process. The system showed excellent reusability (~ 20 cycles) and storage stability (> 30 days) without substantial loss (~ 11%) of activity. Practical applicability of the robust catalytic system towards Cr(VI) toxicity mitigation was established in continuous flow mode using a fixed-bed column reactor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Mitigation of Cr(VI) toxicity using Pd-nanoparticlesimmobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation

Loading next page...
 
/lp/springer_journal/mitigation-of-cr-vi-toxicity-using-pd-nanoparticlesimmobilized-kldtB0EcEx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1709-8
Publisher site
See Article on Publisher Site

Abstract

Catalytic reduction of Cr(VI) to less toxic Cr(III) form using metal nanoparticles is one of the novel approaches adopted to deal with Cr toxicity. In this work, we report the fabrication of a facile, reusable, and robust Pd nanoparticles-immobilized catalytic reactor (Pd-NICaR) system using green, environment-friendly gamma radiolytic, and plasma polymerization processes. A room temperature, RF-powered plasma polymerization process was employed to functionalize a polyethylene–polypropylene (PE–PP) non-woven matrix with epoxy group containing monomer 2,3-epoxypropyl methacrylate (EPMA). EPMA-functionalized PE–PP (EPMA-f-PE–PP) substrate was subsequently used as a template for in situ generation and immobilization of Pd NPs via gamma radiolytic route. The samples were characterized using FTIR, SEM, XPS, and XRF techniques. The catalytic efficacy of Pd-NICaR towards Cr(VI) reduction, in the presence of formic acid (FA) as a reductant, was investigated spectrophotometrically, and reaction parameters were optimized at reaction temperature of 50 °C and [FA]/[Cr(VI)] = 680 to achieve catalytic reduction efficiency of 99.7% within 10 min in batch process. The system showed excellent reusability (~ 20 cycles) and storage stability (> 30 days) without substantial loss (~ 11%) of activity. Practical applicability of the robust catalytic system towards Cr(VI) toxicity mitigation was established in continuous flow mode using a fixed-bed column reactor.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off