Missing value estimation for microarray data through cluster analysis

Missing value estimation for microarray data through cluster analysis Microarray datasets with missing values need to impute accurately before analyzing diseases. The proposed method first discretizes the samples and temporarily assigns a value in missing position of a gene by the mean value of all samples in the same class. The frequencies of each gene value in both types of samples for all genes are calculated separately and if the maximum frequency occurs for same expression value in both types, then the whole gene is entered into a subset; otherwise, each portion of the gene of respective sample type (i.e., normal or disease) is entered into two separate subsets. Thus, for each gene expression value, maximum three different clusters of genes are formed. Each gene subset is further partitioned into a stable number of clusters using proposed splitting and merging clustering algorithm that overcomes the weakness of Euclidian distance metric used in high-dimensional space. Finally, similarity between a gene with missing values and centroids of the clusters are measured and the missing values are estimated by corresponding expression values of a centroid having maximum similarity. The method is compared with various statistical, cluster-based and regression-based methods with respect to statistical and biological metrics using microarray datasets to measure its effectiveness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge and Information Systems Springer Journals

Missing value estimation for microarray data through cluster analysis

Loading next page...
 
/lp/springer_journal/missing-value-estimation-for-microarray-data-through-cluster-analysis-2doof0Qc00
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Information Systems and Communication Service; IT in Business
ISSN
0219-1377
eISSN
0219-3116
D.O.I.
10.1007/s10115-017-1025-5
Publisher site
See Article on Publisher Site

Abstract

Microarray datasets with missing values need to impute accurately before analyzing diseases. The proposed method first discretizes the samples and temporarily assigns a value in missing position of a gene by the mean value of all samples in the same class. The frequencies of each gene value in both types of samples for all genes are calculated separately and if the maximum frequency occurs for same expression value in both types, then the whole gene is entered into a subset; otherwise, each portion of the gene of respective sample type (i.e., normal or disease) is entered into two separate subsets. Thus, for each gene expression value, maximum three different clusters of genes are formed. Each gene subset is further partitioned into a stable number of clusters using proposed splitting and merging clustering algorithm that overcomes the weakness of Euclidian distance metric used in high-dimensional space. Finally, similarity between a gene with missing values and centroids of the clusters are measured and the missing values are estimated by corresponding expression values of a centroid having maximum similarity. The method is compared with various statistical, cluster-based and regression-based methods with respect to statistical and biological metrics using microarray datasets to measure its effectiveness.

Journal

Knowledge and Information SystemsSpringer Journals

Published: Feb 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off