MISO Control System for Noise Reduction in 3-D Enclosures Using PZT Actuators

MISO Control System for Noise Reduction in 3-D Enclosures Using PZT Actuators The low-frequency, high-level blade passage noise in aircraft and helicopter cabins deems passive noise reduction techniques ineffective. Most of the research on active techniques have focused on single input single output (SISO) control. The present work presents a multi-input single output (MISO) linear quadratic Gaussian (LQG) control system to actively reduce acoustic pressure inside a 3-D enclosure, representing a helicopter cabin, using piezoelectric actuators. The enclosure has five walls that are acoustically rigid and is covered with a simply supported flexible plate, to which piezoelectric actuators are symmetrically bonded. External noise is modeled with a time-dependent, spatially bounded Heaviside function simulating vibrations from helicopter rotor impinging disturbance on the upper surface of the cabin. First, the governing equations describing the distribution of plate displacements, piezoelectric actuator response, and acoustic pressure within the cavity are presented and combined to develop the state-space model of the coupled structural-acoustic system. Optimal design of a LQG controller is developed for the case of MISO control. The model is validated by comparison of its results with available published numerical and experimental results. The frequency response of the output due to input from each input channel is then determined and studied. Results demonstrate that significant http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal for Science and Engineering Springer Journals

MISO Control System for Noise Reduction in 3-D Enclosures Using PZT Actuators

Loading next page...
 
/lp/springer_journal/miso-control-system-for-noise-reduction-in-3-d-enclosures-using-pzt-89IFEDcQd6
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by King Fahd University of Petroleum & Minerals
Subject
Engineering; Engineering, general; Science, Humanities and Social Sciences, multidisciplinary
ISSN
1319-8025
eISSN
2191-4281
D.O.I.
10.1007/s13369-018-3349-1
Publisher site
See Article on Publisher Site

Abstract

The low-frequency, high-level blade passage noise in aircraft and helicopter cabins deems passive noise reduction techniques ineffective. Most of the research on active techniques have focused on single input single output (SISO) control. The present work presents a multi-input single output (MISO) linear quadratic Gaussian (LQG) control system to actively reduce acoustic pressure inside a 3-D enclosure, representing a helicopter cabin, using piezoelectric actuators. The enclosure has five walls that are acoustically rigid and is covered with a simply supported flexible plate, to which piezoelectric actuators are symmetrically bonded. External noise is modeled with a time-dependent, spatially bounded Heaviside function simulating vibrations from helicopter rotor impinging disturbance on the upper surface of the cabin. First, the governing equations describing the distribution of plate displacements, piezoelectric actuator response, and acoustic pressure within the cavity are presented and combined to develop the state-space model of the coupled structural-acoustic system. Optimal design of a LQG controller is developed for the case of MISO control. The model is validated by comparison of its results with available published numerical and experimental results. The frequency response of the output due to input from each input channel is then determined and studied. Results demonstrate that significant

Journal

Arabian Journal for Science and EngineeringSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off