MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively regulating NAC transcription factor genes under low temperature

MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively... The miRNAs and their targets involved in senescence of strawberry fruit (Fragaria ananassa L. cv. Zhangji) were analyzed in the present study. In the previous work, three members of miR164 family, mdmmiR164d_ 1ss21AC, mdm-miR164e and mdm-miR164f_1ss21TA, and three of their targets, NAC domain transcriptional regulator superfamily protein, NAC domain containing protein 38 and NAC domain containing protein 87 had been identified by high-throughput sequencing and degradome analysis. In the process of fruit senescence from 0 to 48 h at 4°C storage, the relative levels of mdm-miR164e and mdmmiR164d_1ss21AC expression were significantly increased resulting in decreased expression of NAC genes, and delayed senescence of strawberry fruits. These results suggested that miR164 was involved in strawberry fruit senescence by negatively mediating the expression of NAC transcription factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively regulating NAC transcription factor genes under low temperature

Loading next page...
 
/lp/springer_journal/mir164-is-involved-in-delaying-senescence-of-strawberry-fragaria-fomsoEwsUN
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371702008X
Publisher site
See Article on Publisher Site

Abstract

The miRNAs and their targets involved in senescence of strawberry fruit (Fragaria ananassa L. cv. Zhangji) were analyzed in the present study. In the previous work, three members of miR164 family, mdmmiR164d_ 1ss21AC, mdm-miR164e and mdm-miR164f_1ss21TA, and three of their targets, NAC domain transcriptional regulator superfamily protein, NAC domain containing protein 38 and NAC domain containing protein 87 had been identified by high-throughput sequencing and degradome analysis. In the process of fruit senescence from 0 to 48 h at 4°C storage, the relative levels of mdm-miR164e and mdmmiR164d_1ss21AC expression were significantly increased resulting in decreased expression of NAC genes, and delayed senescence of strawberry fruits. These results suggested that miR164 was involved in strawberry fruit senescence by negatively mediating the expression of NAC transcription factors.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off