Mining top-k frequent patterns in the presence of the memory constraint

Mining top-k frequent patterns in the presence of the memory constraint We explore in this paper a practicably interesting mining task to retrieve top-k ( closed ) itemsets in the presence of the memory constraint. Specifically, as opposed to most previous works that concentrate on improving the mining efficiency or on reducing the memory size by best effort, we first attempt to specify the available upper memory size that can be utilized by mining frequent itemsets. To comply with the upper bound of the memory consumption, two efficient algorithms, called MTK and MTK_Close , are devised for mining frequent itemsets and closed itemsets, respectively, without specifying the subtle minimum support. Instead, users only need to give a more human-understandable parameter, namely the desired number of frequent ( closed ) itemsets k . In practice, it is quite challenging to constrain the memory consumption while also efficiently retrieving top-k itemsets. To effectively achieve this, MTK and MTK_Close are devised as level-wise search algorithms, where the number of candidates being generated-and-tested in each database scan will be limited. A novel search approach, called δ -stair search , is utilized in MTK and MTK_Close to effectively assign the available memory for testing candidate itemsets with various itemset-lengths, which leads to a small number of required database scans. As demonstrated in the empirical study on real data and synthetic data, instead of only providing the flexibility of striking a compromise between the execution efficiency and the memory consumption, MTK and MTK_Close can both achieve high efficiency and have a constrained memory bound, showing the prominent advantage to be practical algorithms of mining frequent patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Mining top-k frequent patterns in the presence of the memory constraint

Loading next page...
 
/lp/springer_journal/mining-top-k-frequent-patterns-in-the-presence-of-the-memory-u6yfmnDV25
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0078-6
Publisher site
See Article on Publisher Site

Abstract

We explore in this paper a practicably interesting mining task to retrieve top-k ( closed ) itemsets in the presence of the memory constraint. Specifically, as opposed to most previous works that concentrate on improving the mining efficiency or on reducing the memory size by best effort, we first attempt to specify the available upper memory size that can be utilized by mining frequent itemsets. To comply with the upper bound of the memory consumption, two efficient algorithms, called MTK and MTK_Close , are devised for mining frequent itemsets and closed itemsets, respectively, without specifying the subtle minimum support. Instead, users only need to give a more human-understandable parameter, namely the desired number of frequent ( closed ) itemsets k . In practice, it is quite challenging to constrain the memory consumption while also efficiently retrieving top-k itemsets. To effectively achieve this, MTK and MTK_Close are devised as level-wise search algorithms, where the number of candidates being generated-and-tested in each database scan will be limited. A novel search approach, called δ -stair search , is utilized in MTK and MTK_Close to effectively assign the available memory for testing candidate itemsets with various itemset-lengths, which leads to a small number of required database scans. As demonstrated in the empirical study on real data and synthetic data, instead of only providing the flexibility of striking a compromise between the execution efficiency and the memory consumption, MTK and MTK_Close can both achieve high efficiency and have a constrained memory bound, showing the prominent advantage to be practical algorithms of mining frequent patterns.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off