Mining learning-dependency between knowledge units from text

Mining learning-dependency between knowledge units from text Identifying learning-dependency among the knowledge units (KU) is a preliminary requirement of navigation learning. Methods based on link mining lack the ability of discovering such dependencies among knowledge units that are arranged in a linear way in the text. In this paper, we propose a method of mining the learning- dependencies among the KU from text document. This method is based on two features that we found and studied from the KU and the learning-dependencies among them. They are the distributional asymmetry of the domain terms and the local nature of the learning-dependency, respectively. Our method consists of three stages, (1) Build document association relationship by calculating the distributional asymmetry of the domain terms. (2) Generate the candidate KU-pairs by measuring the locality of the dependencies. (3) Use classification algorithm to identify the learning-dependency between KU-pairs. Our experimental results show that our method extracts the learning-dependency efficiently and reduces the computational complexity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Mining learning-dependency between knowledge units from text

Loading next page...
 
/lp/springer_journal/mining-learning-dependency-between-knowledge-units-from-text-kG1XG2hkyZ
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0198-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial