Mining frequent conjunctive queries using functional and inclusion dependencies

Mining frequent conjunctive queries using functional and inclusion dependencies We address the issue of mining frequent conjunctive queries in a relational database, a problem known to be intractable even for conjunctive queries over a single table. In this article, we show that mining frequent projection-selection-join queries becomes tractable if joins are performed along keys and foreign keys, in a database satisfying functional and inclusion dependencies, under certain restrictions. We note that these restrictions cover most practical cases, including databases operating over star schemas, snow-flake schemas and constellation schemas. In our approach, we define an equivalence relation over queries using a pre-ordering with respect to which the support is shown to be anti-monotonic. We propose a level-wise algorithm for computing all frequent queries by exploiting the fact that equivalent queries have the same support. We report on experiments showing that, in our context, mining frequent projection-selection-join queries is indeed tractable, even for large data sets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Mining frequent conjunctive queries using functional and inclusion dependencies

Loading next page...
 
/lp/springer_journal/mining-frequent-conjunctive-queries-using-functional-and-inclusion-0AkF5K8DpW
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0277-7
Publisher site
See Article on Publisher Site

Abstract

We address the issue of mining frequent conjunctive queries in a relational database, a problem known to be intractable even for conjunctive queries over a single table. In this article, we show that mining frequent projection-selection-join queries becomes tractable if joins are performed along keys and foreign keys, in a database satisfying functional and inclusion dependencies, under certain restrictions. We note that these restrictions cover most practical cases, including databases operating over star schemas, snow-flake schemas and constellation schemas. In our approach, we define an equivalence relation over queries using a pre-ordering with respect to which the support is shown to be anti-monotonic. We propose a level-wise algorithm for computing all frequent queries by exploiting the fact that equivalent queries have the same support. We report on experiments showing that, in our context, mining frequent projection-selection-join queries is indeed tractable, even for large data sets.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off