Mining billion-scale tensors: algorithms and discoveries

Mining billion-scale tensors: algorithms and discoveries How can we analyze large-scale real-world data with various attributes? Many real-world data (e.g., network traffic logs, web data, social networks, knowledge bases, and sensor streams) with multiple attributes are represented as multi-dimensional arrays, called tensors. For analyzing a tensor, tensor decompositions are widely used in many data mining applications: detecting malicious attackers in network traffic logs (with source IP, destination IP, port-number, timestamp), finding telemarketers in a phone call history (with sender, receiver, date), and identifying interesting concepts in a knowledge base (with subject, object, relation). However, current tensor decomposition methods do not scale to large and sparse real-world tensors with millions of rows and columns and ‘fibers.’ In this paper, we propose HaTen2, a distributed method for large-scale tensor decompositions that runs on the MapReduce framework. Our careful design and implementation of HaTen2 dramatically reduce the size of intermediate data and the number of jobs leading to achieve high scalability compared with the state-of-the-art method. Thanks to HaTen2, we analyze big real-world sparse tensors that cannot be handled by the current state of the art, and discover hidden concepts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Mining billion-scale tensors: algorithms and discoveries

Loading next page...
 
/lp/springer_journal/mining-billion-scale-tensors-algorithms-and-discoveries-kCIV739SJE
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0427-4
Publisher site
See Article on Publisher Site

Abstract

How can we analyze large-scale real-world data with various attributes? Many real-world data (e.g., network traffic logs, web data, social networks, knowledge bases, and sensor streams) with multiple attributes are represented as multi-dimensional arrays, called tensors. For analyzing a tensor, tensor decompositions are widely used in many data mining applications: detecting malicious attackers in network traffic logs (with source IP, destination IP, port-number, timestamp), finding telemarketers in a phone call history (with sender, receiver, date), and identifying interesting concepts in a knowledge base (with subject, object, relation). However, current tensor decomposition methods do not scale to large and sparse real-world tensors with millions of rows and columns and ‘fibers.’ In this paper, we propose HaTen2, a distributed method for large-scale tensor decompositions that runs on the MapReduce framework. Our careful design and implementation of HaTen2 dramatically reduce the size of intermediate data and the number of jobs leading to achieve high scalability compared with the state-of-the-art method. Thanks to HaTen2, we analyze big real-world sparse tensors that cannot be handled by the current state of the art, and discover hidden concepts.

Journal

The VLDB JournalSpringer Journals

Published: Mar 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off