Minimal RNA Aptamer Sequences That Can Inhibit or Alleviate Noncompetitive Inhibition of the Muscle-Type Nicotinic Acetylcholine Receptor

Minimal RNA Aptamer Sequences That Can Inhibit or Alleviate Noncompetitive Inhibition of the... Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~1011 neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Minimal RNA Aptamer Sequences That Can Inhibit or Alleviate Noncompetitive Inhibition of the Muscle-Type Nicotinic Acetylcholine Receptor

Loading next page...
 
/lp/springer_journal/minimal-rna-aptamer-sequences-that-can-inhibit-or-alleviate-xclRukcuA5
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-009-9215-z
Publisher site
See Article on Publisher Site

Abstract

Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~1011 neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 5, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off