# Minimal Convex Combinations of Three Sequential Laplace-Dirichlet Eigenvalues

Minimal Convex Combinations of Three Sequential Laplace-Dirichlet Eigenvalues We study the shape optimization problem where the objective function is a convex combination of three sequential Laplace-Dirichlet eigenvalues. That is, for α ≥0, β ≥0, and α + β ≤1, we consider $\inf\{ \alpha\lambda_{k}(\varOmega)+\beta\lambda _{k+1}(\varOmega)+(1-\alpha-\beta) \lambda_{k+2}(\varOmega)\colon\varOmega\mbox { open set in } \mathbb{R}^{2} \mbox{ and } |\varOmega|\leq1\}$ . Here λ k ( Ω ) denotes the k -th Laplace-Dirichlet eigenvalue and |⋅| denotes the Lebesgue measure. For k =1,2, the minimal values and minimizers are computed explicitly when the set of admissible domains is restricted to the disjoint union of balls. For star-shaped domains, we show that for k =1 and α +2 β ≤1, the ball is a local minimum. For k =1,2, several properties of minimizers are studied computationally, including uniqueness, connectivity, symmetry, and eigenvalue multiplicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

# Minimal Convex Combinations of Three Sequential Laplace-Dirichlet Eigenvalues

, Volume 69 (1) – Feb 1, 2014
17 pages

Loading next page...

/lp/springer_journal/minimal-convex-combinations-of-three-sequential-laplace-dirichlet-tfJLjiRr3l
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-013-9219-z
Publisher site
See Article on Publisher Site

### Abstract

We study the shape optimization problem where the objective function is a convex combination of three sequential Laplace-Dirichlet eigenvalues. That is, for α ≥0, β ≥0, and α + β ≤1, we consider $\inf\{ \alpha\lambda_{k}(\varOmega)+\beta\lambda _{k+1}(\varOmega)+(1-\alpha-\beta) \lambda_{k+2}(\varOmega)\colon\varOmega\mbox { open set in } \mathbb{R}^{2} \mbox{ and } |\varOmega|\leq1\}$ . Here λ k ( Ω ) denotes the k -th Laplace-Dirichlet eigenvalue and |⋅| denotes the Lebesgue measure. For k =1,2, the minimal values and minimizers are computed explicitly when the set of admissible domains is restricted to the disjoint union of balls. For star-shaped domains, we show that for k =1 and α +2 β ≤1, the ball is a local minimum. For k =1,2, several properties of minimizers are studied computationally, including uniqueness, connectivity, symmetry, and eigenvalue multiplicity.

### Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 1, 2014

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off