Mini-slot TDM WDM optical networks

Mini-slot TDM WDM optical networks In recent years, optical transport networks have evolved from interconnected SONET/WDM ring networks to mesh-based optical WDM networks. Time-slot wavelength switching is to aggregate the lower rate traffic at the time-slot level into a wavelength in order to improve bandwidth utilization. With the advancement of fiber-optics technologies, continual increase of fiber bandwidth and number of wavelengths in each fiber, it is possible to divide a wavelength in a fiber into time-slots, and further divide a time-slot into mini-slots so that the fiber bandwidth can be more efficiently utilized. This article proposes a router architecture with an electronic system controller to support optical data transfer at the mini-slot(s) of a time-slot in a wavelength for each hop of a route. The proposed router architecture performs optical circuit switching and does not use any wavelength converter. Each node in the mini-slot TDM WDM optical network consists of the proposed router architecture. Three different network topologies are used to demonstrate the effectiveness and behavior of this type of network in terms of blocking probability and throughput. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Mini-slot TDM WDM optical networks

Loading next page...
 
/lp/springer_journal/mini-slot-tdm-wdm-optical-networks-aDu5SZe4Pg
Publisher
Springer US
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0090-1
Publisher site
See Article on Publisher Site

Abstract

In recent years, optical transport networks have evolved from interconnected SONET/WDM ring networks to mesh-based optical WDM networks. Time-slot wavelength switching is to aggregate the lower rate traffic at the time-slot level into a wavelength in order to improve bandwidth utilization. With the advancement of fiber-optics technologies, continual increase of fiber bandwidth and number of wavelengths in each fiber, it is possible to divide a wavelength in a fiber into time-slots, and further divide a time-slot into mini-slots so that the fiber bandwidth can be more efficiently utilized. This article proposes a router architecture with an electronic system controller to support optical data transfer at the mini-slot(s) of a time-slot in a wavelength for each hop of a route. The proposed router architecture performs optical circuit switching and does not use any wavelength converter. Each node in the mini-slot TDM WDM optical network consists of the proposed router architecture. Three different network topologies are used to demonstrate the effectiveness and behavior of this type of network in terms of blocking probability and throughput.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off