Mimetic Membrane System to Carry Multiple Antigenic Proteins from Leishmania amazonensis

Mimetic Membrane System to Carry Multiple Antigenic Proteins from Leishmania amazonensis Liposomes have long been used as models for lipid membranes and for the reconstitution of a single or multiple proteins. Also, liposomes have adjuvant activity in vaccines against several protozoan or bacterial organisms. Thus, the main objective of the present study was to obtain a crude extract of detergent-solubilized proteins of Leishmania amazonensis amastigotes and reconstitute them into liposomes. Neutral and zwiterionic detergents were less efficient than an ionic detergent. In order to obtain efficient solubilization using only sodium dodecyl sulfate (SDS), the effects of detergent and protein concentration and incubation time were studied. The maximum of solubilized proteins was obtained instantaneously using a ratio of 0.5 mg/ml of protein to 0.1% (w/v) detergent at 4°C. Dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylserine (DPPS) and cholesterol in a weight ratio of 5:1:4 were used for protein reconstitution into liposomes using the cosolubilization method, yielding 60% of incorporation. The incorporation of multiple parasite proteins results in a vesicular diameter of proteoliposomes of about 140 nm, presenting a final lipid weight ratio for DPPC, DPPS and cholesterol of 1:1:5, with high stability. The detergent-solubilized proteins of L. amazonensis amastigotes present in the proteoliposome, when analyzed by SDS-polyacrylamide gel electrophoresis, include a wide range of parasite-incorporated proteins. BALB/c mice inoculated with these proteoliposomes were able to produce antibodies against the proteins reconstituted in DPPC:DPPS:cholesterol liposomes and were partially resistant to infection with L. amazonensis promastigotes. These results indicate that this system can be used as a possible vaccine against L. amazonensis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Mimetic Membrane System to Carry Multiple Antigenic Proteins from Leishmania amazonensis

Loading next page...
 
/lp/springer_journal/mimetic-membrane-system-to-carry-multiple-antigenic-proteins-from-kb3qfil7k9
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0005-6
Publisher site
See Article on Publisher Site

Abstract

Liposomes have long been used as models for lipid membranes and for the reconstitution of a single or multiple proteins. Also, liposomes have adjuvant activity in vaccines against several protozoan or bacterial organisms. Thus, the main objective of the present study was to obtain a crude extract of detergent-solubilized proteins of Leishmania amazonensis amastigotes and reconstitute them into liposomes. Neutral and zwiterionic detergents were less efficient than an ionic detergent. In order to obtain efficient solubilization using only sodium dodecyl sulfate (SDS), the effects of detergent and protein concentration and incubation time were studied. The maximum of solubilized proteins was obtained instantaneously using a ratio of 0.5 mg/ml of protein to 0.1% (w/v) detergent at 4°C. Dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylserine (DPPS) and cholesterol in a weight ratio of 5:1:4 were used for protein reconstitution into liposomes using the cosolubilization method, yielding 60% of incorporation. The incorporation of multiple parasite proteins results in a vesicular diameter of proteoliposomes of about 140 nm, presenting a final lipid weight ratio for DPPC, DPPS and cholesterol of 1:1:5, with high stability. The detergent-solubilized proteins of L. amazonensis amastigotes present in the proteoliposome, when analyzed by SDS-polyacrylamide gel electrophoresis, include a wide range of parasite-incorporated proteins. BALB/c mice inoculated with these proteoliposomes were able to produce antibodies against the proteins reconstituted in DPPC:DPPS:cholesterol liposomes and were partially resistant to infection with L. amazonensis promastigotes. These results indicate that this system can be used as a possible vaccine against L. amazonensis.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 14, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off