Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives

Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future... The quest for a compact and efficient broadband laser source able to probe the numerous fundamental molecular absorption lines in the mid-infrared (3–8 µm) for various applications has been going on for more than a decade. While robust commercial fiber-based supercontinuum (SC) systems have started to appear on the market, they still exhibit poor energy conversion into the mid-infrared (typically under 30%) and are generally not producing wavelengths exceeding 4.7 µm. Here, we present an overview of the results obtained from a novel approach to SC generation based on spectral broadening inside of an erbium-doped fluoride fiber amplifier seeded directly at 2.8 µm, allowing mid-infrared conversion efficiencies reaching up to 95% and spectral coverage approaching the transparency limit of ZrF4 (4.2 µm) and InF3 (5.5 µm) fibers. The general concept of the approach and the physical mechanisms involved are presented alongside the various configurations of the system to adjust the output characteristics in terms of spectral coverage and output power for different applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics B Springer Journals

Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives

Loading next page...
 
/lp/springer_journal/mid-infrared-supercontinuum-generation-in-fluoride-fiber-amplifiers-SifKF2wSi0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Physics, general; Physical Chemistry; Optics, Lasers, Photonics, Optical Devices; Quantum Optics; Engineering, general
ISSN
0946-2171
eISSN
1432-0649
D.O.I.
10.1007/s00340-018-6980-3
Publisher site
See Article on Publisher Site

Abstract

The quest for a compact and efficient broadband laser source able to probe the numerous fundamental molecular absorption lines in the mid-infrared (3–8 µm) for various applications has been going on for more than a decade. While robust commercial fiber-based supercontinuum (SC) systems have started to appear on the market, they still exhibit poor energy conversion into the mid-infrared (typically under 30%) and are generally not producing wavelengths exceeding 4.7 µm. Here, we present an overview of the results obtained from a novel approach to SC generation based on spectral broadening inside of an erbium-doped fluoride fiber amplifier seeded directly at 2.8 µm, allowing mid-infrared conversion efficiencies reaching up to 95% and spectral coverage approaching the transparency limit of ZrF4 (4.2 µm) and InF3 (5.5 µm) fibers. The general concept of the approach and the physical mechanisms involved are presented alongside the various configurations of the system to adjust the output characteristics in terms of spectral coverage and output power for different applications.

Journal

Applied Physics BSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off