Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from wastewater

Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from... Removal of toxic metals is one of the biggest challenges in ensuring safe water for all as well as protecting the environment. Novel multi-walled carbon nanotubes (MCNTs) have been successfully synthesised by microwave techniques and improved to be an outstanding adsorbent for the removal of Zn(II) from wastewater. The adsorption of Zn(II) was studied and optimized as a function of pH, initial Zn(II) concentration, MCNT dosage, agitation speed, and adsorption time. In order to investigate the dynamic behavior of MCNTs as an adsorbent, the kinetic data were modeled using pseudo-first-order and second-order kinetic models. Different thermodynamic parameters, viz., ∆H°, ∆S° and ∆G° have also been evaluated and it has been found that the adsorption was feasible, spontaneous and endothermic in nature. Statistical analysis reveals that the optimum conditions for the highest removal (99.9 %) of Zn(II) are at pH 10, a MCNT dosage 0.05 g, an agitation speed and time of 160 rpm and 60 min, respectively, with an initial concentration of 10 mg/L. On the basis of the Langmuir model, q m was calculated to be 90.9 mg/g for microwave-synthesized MCNTs. Our results proved that MCNTs can be used as an effective Zn(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. Hence, MCNTs serve an important role in the removal of heavy metals from wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from wastewater

Loading next page...
 
/lp/springer_journal/microwave-assisted-synthesis-of-multi-walled-carbon-nanotubes-for-beMDd4igAW
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2209-9
Publisher site
See Article on Publisher Site

Abstract

Removal of toxic metals is one of the biggest challenges in ensuring safe water for all as well as protecting the environment. Novel multi-walled carbon nanotubes (MCNTs) have been successfully synthesised by microwave techniques and improved to be an outstanding adsorbent for the removal of Zn(II) from wastewater. The adsorption of Zn(II) was studied and optimized as a function of pH, initial Zn(II) concentration, MCNT dosage, agitation speed, and adsorption time. In order to investigate the dynamic behavior of MCNTs as an adsorbent, the kinetic data were modeled using pseudo-first-order and second-order kinetic models. Different thermodynamic parameters, viz., ∆H°, ∆S° and ∆G° have also been evaluated and it has been found that the adsorption was feasible, spontaneous and endothermic in nature. Statistical analysis reveals that the optimum conditions for the highest removal (99.9 %) of Zn(II) are at pH 10, a MCNT dosage 0.05 g, an agitation speed and time of 160 rpm and 60 min, respectively, with an initial concentration of 10 mg/L. On the basis of the Langmuir model, q m was calculated to be 90.9 mg/g for microwave-synthesized MCNTs. Our results proved that MCNTs can be used as an effective Zn(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. Hence, MCNTs serve an important role in the removal of heavy metals from wastewater.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 13, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off