Microstructuring strategies of cBN grinding wheels

Microstructuring strategies of cBN grinding wheels A picosecond laser is utilized for microstructuring of a metal-bonded cBN grinding wheel. Two types of structure, both with 15% reduction of the wheel surface area, but with different patterns are produced. The effect of structuring on surface roughness and grinding forces in the cylindrical plunge grinding of 100Cr6 is studied. Reducing the abrasive layer area (15% reduction of the wheel surface area) causes the reduction of grinding forces up to 60%, while the roughness values increase up to 30%. The concentrated structuring approach led to better structure persistence of the wheel structure in comparison with the uniformly distributed structure. Furthermore, temperature measurement demonstrated that microstructuring leads to reduced wheel and workpiece contact zone temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Microstructuring strategies of cBN grinding wheels

Loading next page...
 
/lp/springer_journal/microstructuring-strategies-of-cbn-grinding-wheels-cG3A3gtW9V
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0044-4
Publisher site
See Article on Publisher Site

Abstract

A picosecond laser is utilized for microstructuring of a metal-bonded cBN grinding wheel. Two types of structure, both with 15% reduction of the wheel surface area, but with different patterns are produced. The effect of structuring on surface roughness and grinding forces in the cylindrical plunge grinding of 100Cr6 is studied. Reducing the abrasive layer area (15% reduction of the wheel surface area) causes the reduction of grinding forces up to 60%, while the roughness values increase up to 30%. The concentrated structuring approach led to better structure persistence of the wheel structure in comparison with the uniformly distributed structure. Furthermore, temperature measurement demonstrated that microstructuring leads to reduced wheel and workpiece contact zone temperatures.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off