Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic deformation

Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic... Microstructure evolution and mechanical behavior of ultrafine grained (UFG) commercially pure Ti produced by equal channel angular pressing (ECAP) were investigated. Repetitive pressings of the same sample were performed to six passes at 683 K, using the procedure designated as route B c . After the sixth pass was finished, recrystallized grains were observed as similar as the fourth pass. The average size of the recrystallized grains was approximately 0.3 μm. The hardness value (H v ) continuously increases with decreasing grain size. The H v values are in good agreement with the other experimental data of Ti produced by severe plastic deformation processes. The similar slop k H suggests that these microstructures have similar density of dislocations in the grains produced by the severe plastic deformation processes such as torsion straining, multiple forging, and ECAP. The grain size dependence of k y in the present samples is 7.9  $$ MPa\sqrt m $$ . After six-pass ECAP, the ultimate tensile strength was increased by 60%. This is most likely due to considerable grain refinement through severe deformation by ECAP. The standard Hall–Petch relation for yield strength and hardness in the ECAPed Ti implies that the ECAPed Ti samples have similar texture and that the effect of grain size on strength may prevail over the effect of texture on the strength in Ti. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic deformation

Loading next page...
 
/lp/springer_journal/microstructures-and-mechanical-properties-of-ultrafine-grained-pure-ti-X19ilc0Oup
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0198-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial