Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic deformation

Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic... Microstructure evolution and mechanical behavior of ultrafine grained (UFG) commercially pure Ti produced by equal channel angular pressing (ECAP) were investigated. Repetitive pressings of the same sample were performed to six passes at 683 K, using the procedure designated as route B c . After the sixth pass was finished, recrystallized grains were observed as similar as the fourth pass. The average size of the recrystallized grains was approximately 0.3 μm. The hardness value (H v ) continuously increases with decreasing grain size. The H v values are in good agreement with the other experimental data of Ti produced by severe plastic deformation processes. The similar slop k H suggests that these microstructures have similar density of dislocations in the grains produced by the severe plastic deformation processes such as torsion straining, multiple forging, and ECAP. The grain size dependence of k y in the present samples is 7.9  $$ MPa\sqrt m $$ . After six-pass ECAP, the ultimate tensile strength was increased by 60%. This is most likely due to considerable grain refinement through severe deformation by ECAP. The standard Hall–Petch relation for yield strength and hardness in the ECAPed Ti implies that the ECAPed Ti samples have similar texture and that the effect of grain size on strength may prevail over the effect of texture on the strength in Ti. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic deformation

Loading next page...
 
/lp/springer_journal/microstructures-and-mechanical-properties-of-ultrafine-grained-pure-ti-X19ilc0Oup
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0198-2
Publisher site
See Article on Publisher Site

Abstract

Microstructure evolution and mechanical behavior of ultrafine grained (UFG) commercially pure Ti produced by equal channel angular pressing (ECAP) were investigated. Repetitive pressings of the same sample were performed to six passes at 683 K, using the procedure designated as route B c . After the sixth pass was finished, recrystallized grains were observed as similar as the fourth pass. The average size of the recrystallized grains was approximately 0.3 μm. The hardness value (H v ) continuously increases with decreasing grain size. The H v values are in good agreement with the other experimental data of Ti produced by severe plastic deformation processes. The similar slop k H suggests that these microstructures have similar density of dislocations in the grains produced by the severe plastic deformation processes such as torsion straining, multiple forging, and ECAP. The grain size dependence of k y in the present samples is 7.9  $$ MPa\sqrt m $$ . After six-pass ECAP, the ultimate tensile strength was increased by 60%. This is most likely due to considerable grain refinement through severe deformation by ECAP. The standard Hall–Petch relation for yield strength and hardness in the ECAPed Ti implies that the ECAPed Ti samples have similar texture and that the effect of grain size on strength may prevail over the effect of texture on the strength in Ti.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 18, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off