Microstructure, crystallographic and photoluminescence examination of Ni doped ZnO nanoparticles co-doped with Co by sol–gel method

Microstructure, crystallographic and photoluminescence examination of Ni doped ZnO nanoparticles... Zn0.96−xNi0.04CoxO nanoparticles with different Co concentration from 0 to 6% have been synthesized using sol–gel method. Phase purity of the synthesized samples was confirmed by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy studies. The decreased crystallite size and the increased micro-strain by Co substitution confirmed the substitution of Co2+ instead of Zn2+ ions. Higher optical transmittance and optimal value of energy gap (3.44 eV) found in Zn0.92Ni0.04Co0.04O suggested that it can be taken as possible candidates for the industrial applications especially as transparent electrode. The defects related bluish-green absorption between 483 and 495 nm were due to the existence of oxygen vacancies and intrinsic defects. The strong blue and green band emission was noticed at higher Co-doping concentration due to the generation of new distortion centers in the lattice and surface defects which increases the intensity of green band emission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Microstructure, crystallographic and photoluminescence examination of Ni doped ZnO nanoparticles co-doped with Co by sol–gel method

Loading next page...
 
/lp/springer_journal/microstructure-crystallographic-and-photoluminescence-examination-of-gT1n40fUiK
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7131-z
Publisher site
See Article on Publisher Site

Abstract

Zn0.96−xNi0.04CoxO nanoparticles with different Co concentration from 0 to 6% have been synthesized using sol–gel method. Phase purity of the synthesized samples was confirmed by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy studies. The decreased crystallite size and the increased micro-strain by Co substitution confirmed the substitution of Co2+ instead of Zn2+ ions. Higher optical transmittance and optimal value of energy gap (3.44 eV) found in Zn0.92Ni0.04Co0.04O suggested that it can be taken as possible candidates for the industrial applications especially as transparent electrode. The defects related bluish-green absorption between 483 and 495 nm were due to the existence of oxygen vacancies and intrinsic defects. The strong blue and green band emission was noticed at higher Co-doping concentration due to the generation of new distortion centers in the lattice and surface defects which increases the intensity of green band emission.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off