Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP)

Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel... The microstructure, mechanical properties, and strengthening mechanisms of an Al-Mg-Si alloy (AA6060) subjected to severe plastic deformation using equal channel angular pressing (ECAP) were investigated. Samples were passed through a die with an inner angle of Φ = 90° and outer arc of curvature of ψ = 37° at room temperature up to 12 passes via route Bc. Electron backscatter diffraction (EBSD) was used to evaluate the microstructure and misorientation boundaries. The microstructure showed a large fraction of low-angle boundaries associated with subgrain formation in the first ECAP pass, while after eight and 12 passes, a heterogeneous ultrafine grain structure with an average grain size around 0.57 and 0.47 μm, respectively, was obtained. In order to characterize the mechanical properties, microhardness and tensile tests were carried out. Results of mechanical property tests show that microhardness, yield stress, and ultimate tensile strength increase as ECAP pass number increases up to a maximum value of 120 HV, 344 MPa, and 355 MPa, respectively, after five passes. The Hall–Petch effect, dislocation, solid solution, and precipitation strengthening were evaluated to determine the dependence of the yield stress on the ECAP pass number. The results show that the strength effect arises from the subgrain microstructure rather than from the high-angle grain boundaries developed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP)

Loading next page...
 
/lp/springer_journal/microstructure-and-strengthening-mechanisms-in-an-al-mg-si-alloy-jwETe0o0BU
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1310-1
Publisher site
See Article on Publisher Site

Abstract

The microstructure, mechanical properties, and strengthening mechanisms of an Al-Mg-Si alloy (AA6060) subjected to severe plastic deformation using equal channel angular pressing (ECAP) were investigated. Samples were passed through a die with an inner angle of Φ = 90° and outer arc of curvature of ψ = 37° at room temperature up to 12 passes via route Bc. Electron backscatter diffraction (EBSD) was used to evaluate the microstructure and misorientation boundaries. The microstructure showed a large fraction of low-angle boundaries associated with subgrain formation in the first ECAP pass, while after eight and 12 passes, a heterogeneous ultrafine grain structure with an average grain size around 0.57 and 0.47 μm, respectively, was obtained. In order to characterize the mechanical properties, microhardness and tensile tests were carried out. Results of mechanical property tests show that microhardness, yield stress, and ultimate tensile strength increase as ECAP pass number increases up to a maximum value of 120 HV, 344 MPa, and 355 MPa, respectively, after five passes. The Hall–Petch effect, dislocation, solid solution, and precipitation strengthening were evaluated to determine the dependence of the yield stress on the ECAP pass number. The results show that the strength effect arises from the subgrain microstructure rather than from the high-angle grain boundaries developed.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off