Microstructure and electric conductivity of composite (BeO + TiO2) ceramics

Microstructure and electric conductivity of composite (BeO + TiO2) ceramics Specimens of composite (BeO + TiO2) ceramics with TiO2 added in an amount of 5, 10, 20, 30, and 40 mass% are obtained. The temperature dependence of the conductivity of the (BeO + 30 mass % TiO2) ceramics is studied. Conduction is ensured by the titania additive present in the ceramics in a strongly reduced state. The maximum temperature (950 K) at which the (BeO + 30 mass % TiO2) ceramics preserves its conductive properties in air for a long time and, possibly, the capacity to efficiently absorb microwave radiation is determined. Heating in air at a temperature exceeding 960 K is accompanied by the processes of oxidation of reduced TiO2, which causes disordering of the structure and lowering of the conductivity. An electron microscope study is used to show that the distribution of TiO2 in the BeO of the [BeO + (5, 10, and 30 mass %) TiO2] system is nonuniform; inclusions of large regions of grouped TiO2 microcrystals are encountered. This affects the physicochemical properties of the ceramics, the thermal and electrical conductivities in particular. In order to ensure a uniform distribution of TiO2 in the volume of the ceramics it is recommended to introduce the dioxide into the composition of the BeO powder from solutions (hydrochemical method). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Microstructure and electric conductivity of composite (BeO + TiO2) ceramics

Loading next page...
 
/lp/springer_journal/microstructure-and-electric-conductivity-of-composite-beo-tio2-murYuW3BIa
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Materials Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Materials
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/s11148-008-9012-8
Publisher site
See Article on Publisher Site

Abstract

Specimens of composite (BeO + TiO2) ceramics with TiO2 added in an amount of 5, 10, 20, 30, and 40 mass% are obtained. The temperature dependence of the conductivity of the (BeO + 30 mass % TiO2) ceramics is studied. Conduction is ensured by the titania additive present in the ceramics in a strongly reduced state. The maximum temperature (950 K) at which the (BeO + 30 mass % TiO2) ceramics preserves its conductive properties in air for a long time and, possibly, the capacity to efficiently absorb microwave radiation is determined. Heating in air at a temperature exceeding 960 K is accompanied by the processes of oxidation of reduced TiO2, which causes disordering of the structure and lowering of the conductivity. An electron microscope study is used to show that the distribution of TiO2 in the BeO of the [BeO + (5, 10, and 30 mass %) TiO2] system is nonuniform; inclusions of large regions of grouped TiO2 microcrystals are encountered. This affects the physicochemical properties of the ceramics, the thermal and electrical conductivities in particular. In order to ensure a uniform distribution of TiO2 in the volume of the ceramics it is recommended to introduce the dioxide into the composition of the BeO powder from solutions (hydrochemical method).

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Jul 22, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off