Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique

Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V... The enhancement of the tribological properties of titanium (Ti-6Al-4V) has been the subject of wide range research over the years. The constraints associated with Ti-6Al-4V in severe tribological conditions due of its low hardness and poor wear properties can be enhanced by appropriate enhancement of the microstructure via surface modification technique without altering the bulk material. In this work, Cp-Ti and Co powders were deposited at different admixed percentages by laser cladding on Ti-6Al-4V substrates with respect to laser processing parameters. The laser optimized parameters used are laser power 900 W, powder feed rate 1.0 g/min, beam spot size 3 mm, and gas flow rate 1.2 L/min while scan speed were varied at 0.6and 1.2m/min. The microstructural evolution as well as wear morphology of the coatings were studied using scanning electron microscope equipped with energy dispersed spectrometry (SEM/EDS) while the phase identification were observed using X-ray diffractometer (XRD). Microhardness values of the coatings were obtained while wear test was conducted using a reciprocating set up. The coatings exhibited a good metallurgical bonding between the coatings and the substrate. Results revealed that laser clad sample with high scan speed was more effective in improving the hardness and wear resistance of Ti-Co/Ti6Al4Vcompared to low scan speed. The coatings possess an average hardness value of 730 HV0.1, a value that is about two times greater than that of the substrate. The enhanced wear resistance with high laser scan speed has been attributed to the presence of flower-like structures and formation of fractions of CoTi2, CoTi, AlTi2, AlCo5, AlCo2Ti, and Al2Ti inter-metallic phases dispersed within the coating matrix. In addition, analysis of worn surfaces and wear mechanism indicated improved resistance to tribological actions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique

Loading next page...
 
/lp/springer_journal/microstructural-and-tribological-behavior-of-in-situ-synthesized-ti-co-xunX1Lz1DO
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1300-3
Publisher site
See Article on Publisher Site

Abstract

The enhancement of the tribological properties of titanium (Ti-6Al-4V) has been the subject of wide range research over the years. The constraints associated with Ti-6Al-4V in severe tribological conditions due of its low hardness and poor wear properties can be enhanced by appropriate enhancement of the microstructure via surface modification technique without altering the bulk material. In this work, Cp-Ti and Co powders were deposited at different admixed percentages by laser cladding on Ti-6Al-4V substrates with respect to laser processing parameters. The laser optimized parameters used are laser power 900 W, powder feed rate 1.0 g/min, beam spot size 3 mm, and gas flow rate 1.2 L/min while scan speed were varied at 0.6and 1.2m/min. The microstructural evolution as well as wear morphology of the coatings were studied using scanning electron microscope equipped with energy dispersed spectrometry (SEM/EDS) while the phase identification were observed using X-ray diffractometer (XRD). Microhardness values of the coatings were obtained while wear test was conducted using a reciprocating set up. The coatings exhibited a good metallurgical bonding between the coatings and the substrate. Results revealed that laser clad sample with high scan speed was more effective in improving the hardness and wear resistance of Ti-Co/Ti6Al4Vcompared to low scan speed. The coatings possess an average hardness value of 730 HV0.1, a value that is about two times greater than that of the substrate. The enhanced wear resistance with high laser scan speed has been attributed to the presence of flower-like structures and formation of fractions of CoTi2, CoTi, AlTi2, AlCo5, AlCo2Ti, and Al2Ti inter-metallic phases dispersed within the coating matrix. In addition, analysis of worn surfaces and wear mechanism indicated improved resistance to tribological actions.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off