Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Microscopic high-speed liquid-metal jets in vacuum

Microscopic high-speed liquid-metal jets in vacuum The operation of microscopic high-speed liquid-metal jets in vacuum has been investigated. We show that such jets may be produced with good stability and collimation at higher speeds than previously demonstrated, provided that the nozzle design is appropriate and that cavitation-induced instabilities are avoided. The experiments with a medium-speed tin jet (u ∼ 60 m/s, Re=1.8×104, Z=2.9×10−3) showed that it operated without any signs of instabilities, whereas the stability of high-speed tin jets (d=30 μm, u=500 m/s, Re=5.6×104, Z=4.7×10−3) has been investigated via dynamic similarity using a water jet. Such a 500-m/s tin jet is required as the anode for high-brightness operation of a novel electron-impact X-ray source. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Microscopic high-speed liquid-metal jets in vacuum

Loading next page...
 
/lp/springer_journal/microscopic-high-speed-liquid-metal-jets-in-vacuum-mz2v9AOcGI

References (39)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-005-0013-9
Publisher site
See Article on Publisher Site

Abstract

The operation of microscopic high-speed liquid-metal jets in vacuum has been investigated. We show that such jets may be produced with good stability and collimation at higher speeds than previously demonstrated, provided that the nozzle design is appropriate and that cavitation-induced instabilities are avoided. The experiments with a medium-speed tin jet (u ∼ 60 m/s, Re=1.8×104, Z=2.9×10−3) showed that it operated without any signs of instabilities, whereas the stability of high-speed tin jets (d=30 μm, u=500 m/s, Re=5.6×104, Z=4.7×10−3) has been investigated via dynamic similarity using a water jet. Such a 500-m/s tin jet is required as the anode for high-brightness operation of a novel electron-impact X-ray source.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 12, 2005

There are no references for this article.