Microscale schlieren visualization of near-bubble mass transport during boiling of 2-propanol/water mixtures in a square capillary

Microscale schlieren visualization of near-bubble mass transport during boiling of... In this study, we successfully utilize the microscale schlieren method to visualize the microscale mass transport near the vapor–liquid interface during boiling of 2-propanol/water mixtures in a square capillary. Because the variation in the refractive index with composition is much greater than that with temperature, the microscale schlieren method proves to be a powerful tool for investigating the solutocapillary convection without the interference of thermocapillarity. When the difference between the equilibrium vapor and liquid mole fractions is large, we observe high concentration gradients near the vapor–liquid interface due to both mass diffusion and the solutocapillary effects. Although the solutocapillary convection is decidedly affected by the eruptive nature of the boiling process, the near-bubble mass transport still plays a vital role in boiling heat transfer. In a square capillary of d = 900 μm, mass diffusion dominates and the depletion of 2-propanol near the vapor–liquid interface increases. This leads to an increase in the local bubble point causing the deterioration of heat transfer for 2-propanol/water mixtures. However, in the smaller square capillary of d = 500 μm, the solutocapillary effect becomes more important. The induced convection near the contact line helps to augment the boiling heat transfer at x = 0.015, despite the fact that mass diffusion tends to cause a higher concentration gradient normal to the bubble front during the boiling process. Herein, we prove that the microscale schlieren method is able to provide valuable insight into the leverage between different mechanisms in heat transfer during the vaporization process of 2-propanol/water mixtures in a square capillary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Microscale schlieren visualization of near-bubble mass transport during boiling of 2-propanol/water mixtures in a square capillary

Loading next page...
 
/lp/springer_journal/microscale-schlieren-visualization-of-near-bubble-mass-transport-heMUZlr0a5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1778-5
Publisher site
See Article on Publisher Site

Abstract

In this study, we successfully utilize the microscale schlieren method to visualize the microscale mass transport near the vapor–liquid interface during boiling of 2-propanol/water mixtures in a square capillary. Because the variation in the refractive index with composition is much greater than that with temperature, the microscale schlieren method proves to be a powerful tool for investigating the solutocapillary convection without the interference of thermocapillarity. When the difference between the equilibrium vapor and liquid mole fractions is large, we observe high concentration gradients near the vapor–liquid interface due to both mass diffusion and the solutocapillary effects. Although the solutocapillary convection is decidedly affected by the eruptive nature of the boiling process, the near-bubble mass transport still plays a vital role in boiling heat transfer. In a square capillary of d = 900 μm, mass diffusion dominates and the depletion of 2-propanol near the vapor–liquid interface increases. This leads to an increase in the local bubble point causing the deterioration of heat transfer for 2-propanol/water mixtures. However, in the smaller square capillary of d = 500 μm, the solutocapillary effect becomes more important. The induced convection near the contact line helps to augment the boiling heat transfer at x = 0.015, despite the fact that mass diffusion tends to cause a higher concentration gradient normal to the bubble front during the boiling process. Herein, we prove that the microscale schlieren method is able to provide valuable insight into the leverage between different mechanisms in heat transfer during the vaporization process of 2-propanol/water mixtures in a square capillary.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 3, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off