Microscale schlieren visualization of near-bubble mass transport during boiling of 2-propanol/water mixtures in a square capillary

Microscale schlieren visualization of near-bubble mass transport during boiling of... In this study, we successfully utilize the microscale schlieren method to visualize the microscale mass transport near the vapor–liquid interface during boiling of 2-propanol/water mixtures in a square capillary. Because the variation in the refractive index with composition is much greater than that with temperature, the microscale schlieren method proves to be a powerful tool for investigating the solutocapillary convection without the interference of thermocapillarity. When the difference between the equilibrium vapor and liquid mole fractions is large, we observe high concentration gradients near the vapor–liquid interface due to both mass diffusion and the solutocapillary effects. Although the solutocapillary convection is decidedly affected by the eruptive nature of the boiling process, the near-bubble mass transport still plays a vital role in boiling heat transfer. In a square capillary of d = 900 μm, mass diffusion dominates and the depletion of 2-propanol near the vapor–liquid interface increases. This leads to an increase in the local bubble point causing the deterioration of heat transfer for 2-propanol/water mixtures. However, in the smaller square capillary of d = 500 μm, the solutocapillary effect becomes more important. The induced convection near the contact line helps to augment the boiling heat transfer at x = 0.015, despite the fact that mass diffusion tends to cause a higher concentration gradient normal to the bubble front during the boiling process. Herein, we prove that the microscale schlieren method is able to provide valuable insight into the leverage between different mechanisms in heat transfer during the vaporization process of 2-propanol/water mixtures in a square capillary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Microscale schlieren visualization of near-bubble mass transport during boiling of 2-propanol/water mixtures in a square capillary

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial