Microsatellite DNA in fishes

Microsatellite DNA in fishes For the last 30 years, attempts have been made to discriminate among fish populations by using molecular markers. Although some techniques have proved successful in certain circumstances, the consistent trend to newer markers among fishery geneticists highlights the general lack of resolving power observed with older technologies. The last decade has seen the increasing use of satellite DNA in investigations of genetic variability and divergence. Applications to fish and fisheries-related issues initially concentrated on minisatellite single-locus probes. Although minisatellites have successfully addressed a number of fishery-related questions, this class of satellite DNA has not been widely adopted by fishery geneticists. Most of the current research effort is concentrated on another class of satellite DNA called microsatellites. The large interest in microsatellite loci is largely due to the very high levels of variability that have been observed and the ability to investigate this variation using PCR technology. The isolation and application of microsatellites to research fields as diverse as population genetics, parentage analyses and genome mapping are reviewed. Despite the undisputed advantages that the marker possesses, there are a number of potential problems associated with investigating variation at microsatellite loci. Statistical considerations (e.g. appropriate sample sizes, number of loci and the mutation model assumptions on which the estimate is based) have not been considered in detail yet and the problems are often exacerbated in fish species, as some species show very large numbers of alleles at microsatellite loci. These issues and others, e.g. null alleles, are reviewed and possible solutions are proposed http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Loading next page...
 
/lp/springer_journal/microsatellite-dna-in-fishes-rs0vLM5duL
Publisher
Springer Journals
Copyright
Copyright © 1997 by Chapman and Hall
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1023/A:1018443912945
Publisher site
See Article on Publisher Site

Abstract

For the last 30 years, attempts have been made to discriminate among fish populations by using molecular markers. Although some techniques have proved successful in certain circumstances, the consistent trend to newer markers among fishery geneticists highlights the general lack of resolving power observed with older technologies. The last decade has seen the increasing use of satellite DNA in investigations of genetic variability and divergence. Applications to fish and fisheries-related issues initially concentrated on minisatellite single-locus probes. Although minisatellites have successfully addressed a number of fishery-related questions, this class of satellite DNA has not been widely adopted by fishery geneticists. Most of the current research effort is concentrated on another class of satellite DNA called microsatellites. The large interest in microsatellite loci is largely due to the very high levels of variability that have been observed and the ability to investigate this variation using PCR technology. The isolation and application of microsatellites to research fields as diverse as population genetics, parentage analyses and genome mapping are reviewed. Despite the undisputed advantages that the marker possesses, there are a number of potential problems associated with investigating variation at microsatellite loci. Statistical considerations (e.g. appropriate sample sizes, number of loci and the mutation model assumptions on which the estimate is based) have not been considered in detail yet and the problems are often exacerbated in fish species, as some species show very large numbers of alleles at microsatellite loci. These issues and others, e.g. null alleles, are reviewed and possible solutions are proposed

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Oct 22, 2004

References

  • Microsatellite variation in grey seals (Halichoerus grypus) show evidence of genetic differentiation between two British breeding colonies
    Allen, P.J.; Amos, W.; Pomeroy, P.P.; Twiss, S.D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off