Microsatellite analysis of clonality and individual heterozygosity in natural populations of aspen Populus tremula L.: Identification of highly heterozygous clone

Microsatellite analysis of clonality and individual heterozygosity in natural populations of... Aspen Populus tremula L. (Salicaceae) is the fast-growing tree species of environmental and economic value. Aspen is capable of reproduction by both seeds and vegetative means, forming root sprouts. In an adult stand, identification of ramets of one clone among the trees of seed origin based on their morphology is difficult. A panel of 14 microsatellite loci developed for individual identification of aspen was applied for the clonal structure analysis in four natural aspen stands of the European part of Russia: Moscow and Voronezh oblasts, the Mari-El Republic, and the Republic of Tatarstan. In 52 trees from the Moscow sample, 41 multilocus genotypes were identified; in the Voronezh sample, among 30 individuals, 25 different genotypes were detected; and in the sample from Mari-El, 32 trees were represented by 13 genotypes. In the stand from Sabinsky Forestry, Tatarstan, all of the examined 29 trees were represented by a single genotype. The ancestral tree carrier of this genotype which was the most heterozygous (0.929) among all studied aspen individuals (sample mean, 0.598) obviously has spread over a large territory during several cutting and reproduction cycles, currently occupying the area of 2.2 ha. For aspen, usually suffering from Aspen trunk rot, such high viability is evidence of resistance to the main pathogens. The revealed superclone deserves further study with karyological methods and flow cytometry to determine ploidy level and analysis of the growth rate and the quality of wood for possible use in plantation forest production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Microsatellite analysis of clonality and individual heterozygosity in natural populations of aspen Populus tremula L.: Identification of highly heterozygous clone

Loading next page...
 
/lp/springer_journal/microsatellite-analysis-of-clonality-and-individual-heterozygosity-in-crIcR2kQEA
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416060107
Publisher site
See Article on Publisher Site

Abstract

Aspen Populus tremula L. (Salicaceae) is the fast-growing tree species of environmental and economic value. Aspen is capable of reproduction by both seeds and vegetative means, forming root sprouts. In an adult stand, identification of ramets of one clone among the trees of seed origin based on their morphology is difficult. A panel of 14 microsatellite loci developed for individual identification of aspen was applied for the clonal structure analysis in four natural aspen stands of the European part of Russia: Moscow and Voronezh oblasts, the Mari-El Republic, and the Republic of Tatarstan. In 52 trees from the Moscow sample, 41 multilocus genotypes were identified; in the Voronezh sample, among 30 individuals, 25 different genotypes were detected; and in the sample from Mari-El, 32 trees were represented by 13 genotypes. In the stand from Sabinsky Forestry, Tatarstan, all of the examined 29 trees were represented by a single genotype. The ancestral tree carrier of this genotype which was the most heterozygous (0.929) among all studied aspen individuals (sample mean, 0.598) obviously has spread over a large territory during several cutting and reproduction cycles, currently occupying the area of 2.2 ha. For aspen, usually suffering from Aspen trunk rot, such high viability is evidence of resistance to the main pathogens. The revealed superclone deserves further study with karyological methods and flow cytometry to determine ploidy level and analysis of the growth rate and the quality of wood for possible use in plantation forest production.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 13, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off