MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness

MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness Sensorineural hearing loss is the most common sensory disorder in humans and derives, in most cases, from inner-ear defects or degeneration of the cochlear sensory neuroepithelial hair cells. Genetic factors make a significant contribution to hearing impairment. While mutations in 51 genes have been associated with hereditary sensorineural nonsyndromic hearing loss (NSHL) in humans, the responsible mutations in many other chromosomal loci linked with NSHL have not been identified yet. Recently, mutations in a noncoding microRNA (miRNA) gene, MIR96, which is expressed specifically in the inner-ear hair cells, were linked with progressive hearing loss in humans and mice. Furthermore, additional miRNAs were found to have essential roles in the development and survival of inner-ear hair cells. Epigenetic mechanisms, in particular, DNA methylation and histone modifications, have also been implicated in human deafness, suggesting that several layers of noncoding genes that have never been studied systematically in the inner-ear sensory epithelia are required for normal hearing. This review aims to summarize the current knowledge about the roles of miRNAs and epigenetic regulatory mechanisms in the development, survival, and function of the inner ear, specifically in the sensory epithelia, tectorial membrane, and innervation, and their contribution to hearing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness

Loading next page...
 
/lp/springer_journal/micrornas-and-epigenetic-regulation-in-the-mammalian-inner-ear-d9sE24u4Hj
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-009-9230-5
Publisher site
See Article on Publisher Site

Abstract

Sensorineural hearing loss is the most common sensory disorder in humans and derives, in most cases, from inner-ear defects or degeneration of the cochlear sensory neuroepithelial hair cells. Genetic factors make a significant contribution to hearing impairment. While mutations in 51 genes have been associated with hereditary sensorineural nonsyndromic hearing loss (NSHL) in humans, the responsible mutations in many other chromosomal loci linked with NSHL have not been identified yet. Recently, mutations in a noncoding microRNA (miRNA) gene, MIR96, which is expressed specifically in the inner-ear hair cells, were linked with progressive hearing loss in humans and mice. Furthermore, additional miRNAs were found to have essential roles in the development and survival of inner-ear hair cells. Epigenetic mechanisms, in particular, DNA methylation and histone modifications, have also been implicated in human deafness, suggesting that several layers of noncoding genes that have never been studied systematically in the inner-ear sensory epithelia are required for normal hearing. This review aims to summarize the current knowledge about the roles of miRNAs and epigenetic regulatory mechanisms in the development, survival, and function of the inner ear, specifically in the sensory epithelia, tectorial membrane, and innervation, and their contribution to hearing.

Journal

Mammalian GenomeSpringer Journals

Published: Oct 30, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off