MicroRNA profiles and their control of male gametophyte development in rice

MicroRNA profiles and their control of male gametophyte development in rice Plant microRNAs (miRNAs) act as negative regulators of gene expression by slicing target transcripts or inhibiting translation. A number of miRNAs play important roles in development. In order to investigate the potential function of miRNAs during male gametogenesis in rice, we obtained both gene and small RNA expression profiles by combining microarray and high-throughput sequencing technologies. From the microarray datasets, 2,925 male gametophyte-specific genes were identified, including 107 transcription factors and three significant Argonaute genes (AGO12, AGO13, and AGO17). From the sRNA-Seq datasets, 104 unique miRNAs (miRus) were identified, including 47 known miRus and 57 novel miRus; interestingly, most of the new miRus are pollen-specific and not conserved among species. Furthermore, an interactive network of miRNA-target was constructed based on the two datasets. By employing enrichment analysis, the miRNA-regulated targets were found to be involved in both the up and down pathways, but predominantly in the down pathways, including 37 GO biological processes and 32 KEGG pathways. These findings indicate that miRNAs play a broad regulatory role during male gametophyte development in rice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

MicroRNA profiles and their control of male gametophyte development in rice

Loading next page...
 
/lp/springer_journal/microrna-profiles-and-their-control-of-male-gametophyte-development-in-eROzv80U6n
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9898-x
Publisher site
See Article on Publisher Site

Abstract

Plant microRNAs (miRNAs) act as negative regulators of gene expression by slicing target transcripts or inhibiting translation. A number of miRNAs play important roles in development. In order to investigate the potential function of miRNAs during male gametogenesis in rice, we obtained both gene and small RNA expression profiles by combining microarray and high-throughput sequencing technologies. From the microarray datasets, 2,925 male gametophyte-specific genes were identified, including 107 transcription factors and three significant Argonaute genes (AGO12, AGO13, and AGO17). From the sRNA-Seq datasets, 104 unique miRNAs (miRus) were identified, including 47 known miRus and 57 novel miRus; interestingly, most of the new miRus are pollen-specific and not conserved among species. Furthermore, an interactive network of miRNA-target was constructed based on the two datasets. By employing enrichment analysis, the miRNA-regulated targets were found to be involved in both the up and down pathways, but predominantly in the down pathways, including 37 GO biological processes and 32 KEGG pathways. These findings indicate that miRNAs play a broad regulatory role during male gametophyte development in rice.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 9, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off