MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives

MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives The human population is increasing at an alarming rate, whereas heavy metals (HMs) pollution is mounting serious environmental problem, which could lead to serious concern about the future sufficiency of global food production. Some HMs such as Mn, Cu, and Fe, at lower concentration serves as an essential vital component of plant cell as they are crucial in various enzyme catalyzed biochemical reactions. At higher concentration, a vast variety of HMs such as Mn, Cu, Cd, Fe, Hg, Al and As, impose toxic reaction in the plant system which greatly affect the crop yield. Recently, microRNAs (miRNAs) that are small class of non-coding riboregulator have emerged as central regulator of numerous abiotic stresses including HMs. Increasing reports indicate that plants have evolved specialized inbuilt mechanism viz. signal transduction, translocation and sequestration to counteract the toxic response of HMs. Combining computational and wet laboratory approaches have produced sufficient evidences concerning active involvement of miRNAs during HMs toxicity response by regulating various transcription factors and protein coding genes involved in plant growth and development. However, the direct role of miRNA in controlling various signaling molecules, transporters and chelating agents of HM metabolism is poorly understood. This review focuses on the latest progress made in the area of direct involvement of miRNAs in signaling, translocation and sequestration as well as recently added miRNAs in response to different HMs in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives

Loading next page...
 
/lp/springer_journal/microrna-mediated-regulation-of-metal-toxicity-in-plants-present-SGNKw6YaVa
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0120-6
Publisher site
See Article on Publisher Site

Abstract

The human population is increasing at an alarming rate, whereas heavy metals (HMs) pollution is mounting serious environmental problem, which could lead to serious concern about the future sufficiency of global food production. Some HMs such as Mn, Cu, and Fe, at lower concentration serves as an essential vital component of plant cell as they are crucial in various enzyme catalyzed biochemical reactions. At higher concentration, a vast variety of HMs such as Mn, Cu, Cd, Fe, Hg, Al and As, impose toxic reaction in the plant system which greatly affect the crop yield. Recently, microRNAs (miRNAs) that are small class of non-coding riboregulator have emerged as central regulator of numerous abiotic stresses including HMs. Increasing reports indicate that plants have evolved specialized inbuilt mechanism viz. signal transduction, translocation and sequestration to counteract the toxic response of HMs. Combining computational and wet laboratory approaches have produced sufficient evidences concerning active involvement of miRNAs during HMs toxicity response by regulating various transcription factors and protein coding genes involved in plant growth and development. However, the direct role of miRNA in controlling various signaling molecules, transporters and chelating agents of HM metabolism is poorly understood. This review focuses on the latest progress made in the area of direct involvement of miRNAs in signaling, translocation and sequestration as well as recently added miRNAs in response to different HMs in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 23, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off