MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives

MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives The human population is increasing at an alarming rate, whereas heavy metals (HMs) pollution is mounting serious environmental problem, which could lead to serious concern about the future sufficiency of global food production. Some HMs such as Mn, Cu, and Fe, at lower concentration serves as an essential vital component of plant cell as they are crucial in various enzyme catalyzed biochemical reactions. At higher concentration, a vast variety of HMs such as Mn, Cu, Cd, Fe, Hg, Al and As, impose toxic reaction in the plant system which greatly affect the crop yield. Recently, microRNAs (miRNAs) that are small class of non-coding riboregulator have emerged as central regulator of numerous abiotic stresses including HMs. Increasing reports indicate that plants have evolved specialized inbuilt mechanism viz. signal transduction, translocation and sequestration to counteract the toxic response of HMs. Combining computational and wet laboratory approaches have produced sufficient evidences concerning active involvement of miRNAs during HMs toxicity response by regulating various transcription factors and protein coding genes involved in plant growth and development. However, the direct role of miRNA in controlling various signaling molecules, transporters and chelating agents of HM metabolism is poorly understood. This review focuses on the latest progress made in the area of direct involvement of miRNAs in signaling, translocation and sequestration as well as recently added miRNAs in response to different HMs in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial