MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational approach

MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational... Current progress in high-throughput sequencing has opened up avenues to produce massive quantities of sequencing data from non-model fishes at an affordable cost. Thus, data analysis is also evolving at a rapid pace because of cutting edge computational tools. With the development and availability of experimental technologies and computational approaches, the field of MicroRNA (miRNA) biology has advanced over the last decade. MicroRNAs can play an important role in gene modulation via post-transcriptional gene regulation during acclimation and adaptation, in case of adverse conditions or climate change for example. These are useful and substantial contributors to regulatory networks of development and adaptive plasticity in fishes. Next generation sequencing technologies have extensively been used for solving biological questions in non-model fishes, where data pertaining to genome or transcriptome are either scant or totally unavailable. The data generated through this process have been used for gene discovery, variant identification, marker discovery and miRNA identification. Here, we discuss the role of miRNA in gene regulation pertaining to fish and its investigation via sequencing platforms, as well as the current use of computational algorithms for miRNA analysis. The purpose of this review is to examine the use of miRNA in aquaculture and further to investigate new technologies and advanced computational tools. However, our review also emphasizes existing challenges for miRNA investigations carried out via high-throughput sequencing and the growing demand for computationally intensive analysis software. This work along with assembled information on the known miRNAs in fish species will be useful while undertaking future studies for understanding the role of miRNAs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational approach

Loading next page...
 
/lp/springer_journal/microrna-in-aquaculture-fishes-a-way-forward-with-high-throughput-f7Tp1WUh0q
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer International Publishing Switzerland
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-016-9421-6
Publisher site
See Article on Publisher Site

Abstract

Current progress in high-throughput sequencing has opened up avenues to produce massive quantities of sequencing data from non-model fishes at an affordable cost. Thus, data analysis is also evolving at a rapid pace because of cutting edge computational tools. With the development and availability of experimental technologies and computational approaches, the field of MicroRNA (miRNA) biology has advanced over the last decade. MicroRNAs can play an important role in gene modulation via post-transcriptional gene regulation during acclimation and adaptation, in case of adverse conditions or climate change for example. These are useful and substantial contributors to regulatory networks of development and adaptive plasticity in fishes. Next generation sequencing technologies have extensively been used for solving biological questions in non-model fishes, where data pertaining to genome or transcriptome are either scant or totally unavailable. The data generated through this process have been used for gene discovery, variant identification, marker discovery and miRNA identification. Here, we discuss the role of miRNA in gene regulation pertaining to fish and its investigation via sequencing platforms, as well as the current use of computational algorithms for miRNA analysis. The purpose of this review is to examine the use of miRNA in aquaculture and further to investigate new technologies and advanced computational tools. However, our review also emphasizes existing challenges for miRNA investigations carried out via high-throughput sequencing and the growing demand for computationally intensive analysis software. This work along with assembled information on the known miRNAs in fish species will be useful while undertaking future studies for understanding the role of miRNAs.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Feb 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off