MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational approach

MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational... Current progress in high-throughput sequencing has opened up avenues to produce massive quantities of sequencing data from non-model fishes at an affordable cost. Thus, data analysis is also evolving at a rapid pace because of cutting edge computational tools. With the development and availability of experimental technologies and computational approaches, the field of MicroRNA (miRNA) biology has advanced over the last decade. MicroRNAs can play an important role in gene modulation via post-transcriptional gene regulation during acclimation and adaptation, in case of adverse conditions or climate change for example. These are useful and substantial contributors to regulatory networks of development and adaptive plasticity in fishes. Next generation sequencing technologies have extensively been used for solving biological questions in non-model fishes, where data pertaining to genome or transcriptome are either scant or totally unavailable. The data generated through this process have been used for gene discovery, variant identification, marker discovery and miRNA identification. Here, we discuss the role of miRNA in gene regulation pertaining to fish and its investigation via sequencing platforms, as well as the current use of computational algorithms for miRNA analysis. The purpose of this review is to examine the use of miRNA in aquaculture and further to investigate new technologies and advanced computational tools. However, our review also emphasizes existing challenges for miRNA investigations carried out via high-throughput sequencing and the growing demand for computationally intensive analysis software. This work along with assembled information on the known miRNAs in fish species will be useful while undertaking future studies for understanding the role of miRNAs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational approach

Loading next page...
 
/lp/springer_journal/microrna-in-aquaculture-fishes-a-way-forward-with-high-throughput-f7Tp1WUh0q
Publisher
Springer International Publishing
Copyright
Copyright © 2016 by Springer International Publishing Switzerland
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-016-9421-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial