Microparticle HZSM-5 zeolite as highly active catalyst for the hydration of cyclohexene to cyclohexanol

Microparticle HZSM-5 zeolite as highly active catalyst for the hydration of cyclohexene to... Microparticle HZSM-5 zeolite (MPZ) has been prepared without employing any organic templates, and used as a catalyst for the hydration of cyclohexene to synthesize cyclohexanol. MPZ exhibits better catalytic performance and superior settlement separation property than those of commercial HZSM-5 prepared by the traditional method using an organic template. The stability of MPZ has been investigated for a 1200-h test, and the regenerated performance of MPZ has also been investigated. The results show that although MPZ was reused for five recycles, the high cyclohexene conversion of 9.6 % and the high cyclohexanol selectivity of 96.8 % are still attained after the fifth regeneration. FT-IR, XRD and N2 adsorption–desorption characterizations show that coke deposit on the surface and in the channels of MPZ is the main reason for the deactivation. ICP-AES, SEM–EDS and NH3-TPD characterizations indicate that hydrothermal dealumination reduces the strong acidity and accelerates the catalyst deactivation. The spent catalyst by regeneration with H2O2 could be recovered to its initial high catalytic activity, due to the restored appropriate channels and exposed active sites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Microparticle HZSM-5 zeolite as highly active catalyst for the hydration of cyclohexene to cyclohexanol

Loading next page...
 
/lp/springer_journal/microparticle-hzsm-5-zeolite-as-highly-active-catalyst-for-the-A4SdvQzj4Q
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2584-x
Publisher site
See Article on Publisher Site

Abstract

Microparticle HZSM-5 zeolite (MPZ) has been prepared without employing any organic templates, and used as a catalyst for the hydration of cyclohexene to synthesize cyclohexanol. MPZ exhibits better catalytic performance and superior settlement separation property than those of commercial HZSM-5 prepared by the traditional method using an organic template. The stability of MPZ has been investigated for a 1200-h test, and the regenerated performance of MPZ has also been investigated. The results show that although MPZ was reused for five recycles, the high cyclohexene conversion of 9.6 % and the high cyclohexanol selectivity of 96.8 % are still attained after the fifth regeneration. FT-IR, XRD and N2 adsorption–desorption characterizations show that coke deposit on the surface and in the channels of MPZ is the main reason for the deactivation. ICP-AES, SEM–EDS and NH3-TPD characterizations indicate that hydrothermal dealumination reduces the strong acidity and accelerates the catalyst deactivation. The spent catalyst by regeneration with H2O2 could be recovered to its initial high catalytic activity, due to the restored appropriate channels and exposed active sites.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 7, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off