Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo

Micromechanical modeling in determining the transverse elastic moduli and stress distributions of... In order to enhance the understanding of the microstructural characteristics of bamboo culm within transverse directions, two micromechanics models, Halpin–Tsai (H–T) equations and Mori–Tanaka (M–T) model, are introduced to generate the homogenized moduli in the transverse direction, which cannot be easily predicted using the traditional rule of mixtures that was mostly adopted in the previous literatures. A multi-scale framework is then created by connecting the micromechanics models with structural analysis of bamboo culm cross section, which is treated as concentric composite cylinders composed of fiber vascular bundles and ground tissue with different volume fractions that usually increase from inner periphery to outer periphery. Finally, several numerical examples are illustrated to prove the availability of the present micromechanics models in calculating homogenized moduli and practicing bamboo structural analysis. It has been found that the H–T equations and M–T model usually predict well-matched homogenized moduli, leading to similar stress distributions along the radial direction under symmetric loading boundary conditions. In general, both micromechanics models provide easy predictions of homogenized moduli for future numerical and experimental research of bamboo cross sections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo

Loading next page...
 
/lp/springer_journal/micromechanical-modeling-in-determining-the-transverse-elastic-moduli-LFW7F731OE
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1692-3
Publisher site
See Article on Publisher Site

Abstract

In order to enhance the understanding of the microstructural characteristics of bamboo culm within transverse directions, two micromechanics models, Halpin–Tsai (H–T) equations and Mori–Tanaka (M–T) model, are introduced to generate the homogenized moduli in the transverse direction, which cannot be easily predicted using the traditional rule of mixtures that was mostly adopted in the previous literatures. A multi-scale framework is then created by connecting the micromechanics models with structural analysis of bamboo culm cross section, which is treated as concentric composite cylinders composed of fiber vascular bundles and ground tissue with different volume fractions that usually increase from inner periphery to outer periphery. Finally, several numerical examples are illustrated to prove the availability of the present micromechanics models in calculating homogenized moduli and practicing bamboo structural analysis. It has been found that the H–T equations and M–T model usually predict well-matched homogenized moduli, leading to similar stress distributions along the radial direction under symmetric loading boundary conditions. In general, both micromechanics models provide easy predictions of homogenized moduli for future numerical and experimental research of bamboo cross sections.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off