Microhardness and fracture toughness of ZrO2–Sc2O3 solid electrolyte, doped with rare-earth and transition metals

Microhardness and fracture toughness of ZrO2–Sc2O3 solid electrolyte, doped with rare-earth and... The influence of low concentrations (1 mol %) of co-dopants (Y, Ce, Gd, Er, La, Zn, Mn, Co and Cu) on the microhardness and fracture toughness of Zr0.81Sc0.19O2–δ (10.5ScSZ) solid electrolyte was studied by the indentation method. It was shown that co-doping of 10.5ScSZ by the rare-earth elements (Y, Ce, Gd, Er) results in microhardness increase on 4–45% due to stabilization of cubic phase in the grains, while the microhardness changing upon transition metals (Mn, Cu, Co, Zn) introduction is caused by the grain boundaries modification. The microhardness decreases on ~4 and 10% upon doping by Mn and Cu, accordingly, whereas the introduction of Co and Zn results in its increase approximately by 2 times. It was shown also that the influence of all investigated dopants on the fracture toughness is insignificant. The maximal effect observed for Cu was the fracture toughness increase from 2.1 up to 2.6 MPa m0.5. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inorganic Materials Springer Journals

Microhardness and fracture toughness of ZrO2–Sc2O3 solid electrolyte, doped with rare-earth and transition metals

Loading next page...
 
/lp/springer_journal/microhardness-and-fracture-toughness-of-zro2-sc2o3-solid-electrolyte-UwT0YANd0k
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Inorganic Chemistry; Industrial Chemistry/Chemical Engineering; Materials Science, general
ISSN
0020-1685
eISSN
1608-3172
D.O.I.
10.1134/S002016851709014X
Publisher site
See Article on Publisher Site

Abstract

The influence of low concentrations (1 mol %) of co-dopants (Y, Ce, Gd, Er, La, Zn, Mn, Co and Cu) on the microhardness and fracture toughness of Zr0.81Sc0.19O2–δ (10.5ScSZ) solid electrolyte was studied by the indentation method. It was shown that co-doping of 10.5ScSZ by the rare-earth elements (Y, Ce, Gd, Er) results in microhardness increase on 4–45% due to stabilization of cubic phase in the grains, while the microhardness changing upon transition metals (Mn, Cu, Co, Zn) introduction is caused by the grain boundaries modification. The microhardness decreases on ~4 and 10% upon doping by Mn and Cu, accordingly, whereas the introduction of Co and Zn results in its increase approximately by 2 times. It was shown also that the influence of all investigated dopants on the fracture toughness is insignificant. The maximal effect observed for Cu was the fracture toughness increase from 2.1 up to 2.6 MPa m0.5.

Journal

Inorganic MaterialsSpringer Journals

Published: Aug 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off