Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Microfluidics Approaches in Modern Developmental Biology

Microfluidics Approaches in Modern Developmental Biology Modern automated microsystems based on microhydrodynamic (microfluidic) technologies— labs on chips—make it possible to solve various basic and applied research problems. In the last 15 years, the development of these approaches in application to the problems of modern quantitative (systems) development biology has been observed. In this field, high-throughput experiments aimed at accumulating ample quantitative data for their subsequent computer analysis are important. In this review, the main directions in the development and application of microfluidics approaches for solving problems of modern developmental biology using the classical model object, Drosophila embryo, as an example is discussed. Microfluidic systems provide an opportunity to perform experiments that can hardly be performed using other approaches. These systems allow automated, rapid, reliable, and proper placing of many live embryos on a substrate for their simultaneous confocal scanning, sorting them, or injecting them with various agents. Such systems make it possible, in particular, to create controlled gradients of microenvironmental parameters along a series of developing embryos or even to introduce discontinuity in parameters within the microenvironment of one embryo, so that the head half is under other conditions compared to the tail half (at continuous scanning). These approaches are used both in basic research of the functions of gene ensembles that control early development, including the problems of resistance of early patterns to disturbances, and in test systems for screening chemical agents on developing embryos. The problems of integration of microfluidic devices in systems for automated performance of experiments simultaneously on many developing embryos under conditions of their continuous scanning using modern fluorescence microscopy instruments will be discussed. The methods and approaches developed for Drosophila are also applicable to other model objects, even mammalian embryos. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Microfluidics Approaches in Modern Developmental Biology

Russian Journal of Developmental Biology , Volume 49 (3) – Jun 1, 2018

Loading next page...
 
/lp/springer_journal/microfluidics-approaches-in-modern-developmental-biology-QnaXArigX6

References (69)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
DOI
10.1134/S1062360418030086
Publisher site
See Article on Publisher Site

Abstract

Modern automated microsystems based on microhydrodynamic (microfluidic) technologies— labs on chips—make it possible to solve various basic and applied research problems. In the last 15 years, the development of these approaches in application to the problems of modern quantitative (systems) development biology has been observed. In this field, high-throughput experiments aimed at accumulating ample quantitative data for their subsequent computer analysis are important. In this review, the main directions in the development and application of microfluidics approaches for solving problems of modern developmental biology using the classical model object, Drosophila embryo, as an example is discussed. Microfluidic systems provide an opportunity to perform experiments that can hardly be performed using other approaches. These systems allow automated, rapid, reliable, and proper placing of many live embryos on a substrate for their simultaneous confocal scanning, sorting them, or injecting them with various agents. Such systems make it possible, in particular, to create controlled gradients of microenvironmental parameters along a series of developing embryos or even to introduce discontinuity in parameters within the microenvironment of one embryo, so that the head half is under other conditions compared to the tail half (at continuous scanning). These approaches are used both in basic research of the functions of gene ensembles that control early development, including the problems of resistance of early patterns to disturbances, and in test systems for screening chemical agents on developing embryos. The problems of integration of microfluidic devices in systems for automated performance of experiments simultaneously on many developing embryos under conditions of their continuous scanning using modern fluorescence microscopy instruments will be discussed. The methods and approaches developed for Drosophila are also applicable to other model objects, even mammalian embryos.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Jun 1, 2018

There are no references for this article.