Microfluidic switchboards with integrated inertial pumps

Microfluidic switchboards with integrated inertial pumps Arrays of H-shaped microfluidic channels connecting two different fluidic reservoirs have been built with silicon/SU8 microfabrication technologies utilized in production of thermal inkjet printheads. The fluids are delivered to the channels via slots etched through the silicon wafer. Every H-shaped channel comprises four thermal inkjet resistors, one in each of the four legs. The resistors vaporize water and generate drive bubbles that pump the fluids from the bulk reservoirs into and out of the channels. By varying relative frequencies of the four pumps, input fluids can be routed to any part of the network in any proportion. Several fluidic operations including dilution, mixing, dynamic valving, and routing have been demonstrated. Thus, a fully integrated microfluidic switchboard that does not require external sources of mechanical power has been achieved. A matrix formalism to describe flow in complex switchboards has been developed and tested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

Microfluidic switchboards with integrated inertial pumps

Loading next page...
 
/lp/springer_journal/microfluidic-switchboards-with-integrated-inertial-pumps-TuQdCdPWvI
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Fluid Dynamics; Biomedical Engineering; Analytical Chemistry; Nanotechnology and Microengineering
ISSN
1613-4982
eISSN
1613-4990
D.O.I.
10.1007/s10404-017-2032-2
Publisher site
See Article on Publisher Site

Abstract

Arrays of H-shaped microfluidic channels connecting two different fluidic reservoirs have been built with silicon/SU8 microfabrication technologies utilized in production of thermal inkjet printheads. The fluids are delivered to the channels via slots etched through the silicon wafer. Every H-shaped channel comprises four thermal inkjet resistors, one in each of the four legs. The resistors vaporize water and generate drive bubbles that pump the fluids from the bulk reservoirs into and out of the channels. By varying relative frequencies of the four pumps, input fluids can be routed to any part of the network in any proportion. Several fluidic operations including dilution, mixing, dynamic valving, and routing have been demonstrated. Thus, a fully integrated microfluidic switchboard that does not require external sources of mechanical power has been achieved. A matrix formalism to describe flow in complex switchboards has been developed and tested.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Jan 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off