Microfacies and depositional environment of Late Cretaceous to Early Paleocene oil shales from Jordan

Microfacies and depositional environment of Late Cretaceous to Early Paleocene oil shales from... The purpose of this study is to better understand the depositional setting of Late Cretaceous to Early Paleocene oil shales from southeast and central-east Jordan. One core from both the Jafr and the Azraq-Hamza Basins was logged, and their lithology, texture, and ichnofabrics were recorded. A total of 79 thin sections were analyzed petrographically, and eight microfacies types recognized. Both cores show lithologic and petrographic similarities. The oil shales are Maastrichtian to Danian in age and can be described as organic matter and calcite-rich mudrocks. The most abundant granular components are foraminifera and various types of phosphatic bio- and lithoclasts. Macrofossils (bivalves, ostracods, echinoderms) were recorded in some intervals. The current results were compared with data from a previous publication on Maastrichtian oil shales from the Jafr Basin. A new model explaining the deposition of the oil shales of the Jafr and Azraq-Hamza Basins is proposed. The onset of the Maastrichtian oil shale deposition in both basins coincides with the early Maastrichtian transgression in this region. The organic matter-rich sediments were deposited in a mid to outer ramp setting below the storm wave base. Younger oil shales of Late Maastrichtian to Danian age were deposited in a shallower environment, below the fair weather wave base. The Cretaceous/Paleogene boundary is marked by a hiatus in both cores. The Danian oil shales show relatively lower “total organic carbon” content than the Maastrichtian ones. The former are believed to have been deposited in more oxygenated bottom waters of a mid-ramp zone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal of Geosciences Springer Journals

Microfacies and depositional environment of Late Cretaceous to Early Paleocene oil shales from Jordan

Loading next page...
 
/lp/springer_journal/microfacies-and-depositional-environment-of-late-cretaceous-to-early-t60CqbyRC4
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Saudi Society for Geosciences
Subject
Earth Sciences; Earth Sciences, general
ISSN
1866-7511
eISSN
1866-7538
D.O.I.
10.1007/s12517-017-3118-6
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study is to better understand the depositional setting of Late Cretaceous to Early Paleocene oil shales from southeast and central-east Jordan. One core from both the Jafr and the Azraq-Hamza Basins was logged, and their lithology, texture, and ichnofabrics were recorded. A total of 79 thin sections were analyzed petrographically, and eight microfacies types recognized. Both cores show lithologic and petrographic similarities. The oil shales are Maastrichtian to Danian in age and can be described as organic matter and calcite-rich mudrocks. The most abundant granular components are foraminifera and various types of phosphatic bio- and lithoclasts. Macrofossils (bivalves, ostracods, echinoderms) were recorded in some intervals. The current results were compared with data from a previous publication on Maastrichtian oil shales from the Jafr Basin. A new model explaining the deposition of the oil shales of the Jafr and Azraq-Hamza Basins is proposed. The onset of the Maastrichtian oil shale deposition in both basins coincides with the early Maastrichtian transgression in this region. The organic matter-rich sediments were deposited in a mid to outer ramp setting below the storm wave base. Younger oil shales of Late Maastrichtian to Danian age were deposited in a shallower environment, below the fair weather wave base. The Cretaceous/Paleogene boundary is marked by a hiatus in both cores. The Danian oil shales show relatively lower “total organic carbon” content than the Maastrichtian ones. The former are believed to have been deposited in more oxygenated bottom waters of a mid-ramp zone.

Journal

Arabian Journal of GeosciencesSpringer Journals

Published: Aug 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off