Microevolution of Nodule Bacteria upon Generation of Mutants with Altered Survival in the Plant–Soil System

Microevolution of Nodule Bacteria upon Generation of Mutants with Altered Survival in the... Simulation of cyclic processes in the plant–soil system was used to analyze the effects of factors responsible for the population dynamics of rhizobia on generation of mutants with changedex planta viability. Rhizobial evolution in a system of ecological niches (soil, rhizosphere, nodules) was described with recurrent equations. Computer experiments were carried out with parameters determining the mutation pressure, selection, and amplitude of the population wave arising in soil on the release of bacteria from nodules and the rhizosphere. Analysis of the model showed that (1) mutants with enhanced ex planta viability do not completely replace the parental strain and (2) mutants with impaired ex planta viability may be fixed in the population. The maintenance of genotypes subject to elimination from the soil and rhizosphere by Darwinian selection was associated with frequency-dependent selection (FDS), which is effective in competition for nodulation. The FDS index was proposed to characterize FDS pressure and was shown to determine the population polymorphism for adaptive traits. An increase in population wave amplitude proved to increase the fixation level (the proportion in the limiting state of the system) of mutants with enhanced viability and to decrease it in mutants with low viability. The results obtained with the model agreed with the data that, in edaphic stress, rhizobial populations remain highly polymorphic, which is associated with the maintenance of sensitive strains. The simulation procedure may be employed in estimating the genetic consequences of introduction of modified rhizobial strains in the environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Microevolution of Nodule Bacteria upon Generation of Mutants with Altered Survival in the Plant–Soil System

Loading next page...
 
/lp/springer_journal/microevolution-of-nodule-bacteria-upon-generation-of-mutants-with-Gh6qj0odEJ
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000009147.28398.90
Publisher site
See Article on Publisher Site

Abstract

Simulation of cyclic processes in the plant–soil system was used to analyze the effects of factors responsible for the population dynamics of rhizobia on generation of mutants with changedex planta viability. Rhizobial evolution in a system of ecological niches (soil, rhizosphere, nodules) was described with recurrent equations. Computer experiments were carried out with parameters determining the mutation pressure, selection, and amplitude of the population wave arising in soil on the release of bacteria from nodules and the rhizosphere. Analysis of the model showed that (1) mutants with enhanced ex planta viability do not completely replace the parental strain and (2) mutants with impaired ex planta viability may be fixed in the population. The maintenance of genotypes subject to elimination from the soil and rhizosphere by Darwinian selection was associated with frequency-dependent selection (FDS), which is effective in competition for nodulation. The FDS index was proposed to characterize FDS pressure and was shown to determine the population polymorphism for adaptive traits. An increase in population wave amplitude proved to increase the fixation level (the proportion in the limiting state of the system) of mutants with enhanced viability and to decrease it in mutants with low viability. The results obtained with the model agreed with the data that, in edaphic stress, rhizobial populations remain highly polymorphic, which is associated with the maintenance of sensitive strains. The simulation procedure may be employed in estimating the genetic consequences of introduction of modified rhizobial strains in the environment.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off