Microcirculatory Disorders and Protective Role of Xuebijing in Severe Heat Stroke

Microcirculatory Disorders and Protective Role of Xuebijing in Severe Heat Stroke This study was conducted to explore underlying mechanism of microcirculation dysfunction and protectiverole of Xuebijing in heat stroke. Forty rats were divided into: control, vehicle + heat stress (HS), superoxide dismutase (SOD) + HS, and Xuebijing + HS groups. Rats in heat stress groups were subjected to continuous heat stress in infant incubator 1 h after tail vein injection of the tested compound and spinotrapezius preparation. Velocity of blood flow through micro-vessels and vascular diameter were detected in real time. Another 27 rats were divided into: vehicle, SOD, and Xuebijing groups, then further divided into three subgroups each: control, Tcore = 38 °C, Tcore = 41 °C. Rats were sacrificed, and spinotrapezius single-cell suspensions were prepared for detecting SOD and reactive oxygen species (ROS). The results showed that heat stress decreased SOD activity, increased ROS levels, and reduced the blood flow rate. Xuebijing increased SOD activity, decreased ROS levels and exhibited a protective effect in terms of blood flow rate but was less protective than SOD. The survival time in Xuebijing + HS group was longer than that in vehicle group but shorter than that in SOD + HS group. The results suggested Xuebijing could decrease ROS levels and have protective effects in severe heat stroke. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Microcirculatory Disorders and Protective Role of Xuebijing in Severe Heat Stroke

Loading next page...
 
/lp/springer_journal/microcirculatory-disorders-and-protective-role-of-xuebijing-in-severe-V63WcI0qD4
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22812-w
Publisher site
See Article on Publisher Site

Abstract

This study was conducted to explore underlying mechanism of microcirculation dysfunction and protectiverole of Xuebijing in heat stroke. Forty rats were divided into: control, vehicle + heat stress (HS), superoxide dismutase (SOD) + HS, and Xuebijing + HS groups. Rats in heat stress groups were subjected to continuous heat stress in infant incubator 1 h after tail vein injection of the tested compound and spinotrapezius preparation. Velocity of blood flow through micro-vessels and vascular diameter were detected in real time. Another 27 rats were divided into: vehicle, SOD, and Xuebijing groups, then further divided into three subgroups each: control, Tcore = 38 °C, Tcore = 41 °C. Rats were sacrificed, and spinotrapezius single-cell suspensions were prepared for detecting SOD and reactive oxygen species (ROS). The results showed that heat stress decreased SOD activity, increased ROS levels, and reduced the blood flow rate. Xuebijing increased SOD activity, decreased ROS levels and exhibited a protective effect in terms of blood flow rate but was less protective than SOD. The survival time in Xuebijing + HS group was longer than that in vehicle group but shorter than that in SOD + HS group. The results suggested Xuebijing could decrease ROS levels and have protective effects in severe heat stroke.

Journal

Scientific ReportsSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial