Microcellular chlorinated polyethylene (CM) rubber foam by using N2 as blowing agent

Microcellular chlorinated polyethylene (CM) rubber foam by using N2 as blowing agent Microcellular Chlorinated Polyethylene (CM) foams were prepared through the batch-foaming method by using nitrogen as blowing agent. The effects of varying curing time, curing temperature, crosslinking agent content, carbon black content on the cell structure and physical-mechanical properties of CM foam were investigated by scanning electron microscopy (SEM) and universal testing machine (UTM) respectively. The effect of the crosslink density on the CM foaming by varying curing time, curing temperature and crosslink agent revealed that there must be a minimum crosslink density attained in the vulcanizates for its effective foaming. However, when increasing the crosslink density of the vulvanizates beyond the sufficient crosslink density needed for foaming, the average cell sizes of the foams decreased and cell density increased. Expansion of the foams reduce its mechanical properties whereas increase of crosslink density of the matrix improved the mechanical properties. The existence of carbon black caused a decrease in average cell size and increase in cell density for the CM foams, resulting significant increase in mechanical properties of CM foams with increase of carbon black content. The observed phenomenon is attributed with good reinforcing behavior of carbon black to the CM foams. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymer Research Springer Journals

Microcellular chlorinated polyethylene (CM) rubber foam by using N2 as blowing agent

Loading next page...
 
/lp/springer_journal/microcellular-chlorinated-polyethylene-cm-rubber-foam-by-using-n2-as-XROvBo23dS
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Polymer Sciences; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials
ISSN
1022-9760
eISSN
1572-8935
D.O.I.
10.1007/s10965-017-1340-2
Publisher site
See Article on Publisher Site

Abstract

Microcellular Chlorinated Polyethylene (CM) foams were prepared through the batch-foaming method by using nitrogen as blowing agent. The effects of varying curing time, curing temperature, crosslinking agent content, carbon black content on the cell structure and physical-mechanical properties of CM foam were investigated by scanning electron microscopy (SEM) and universal testing machine (UTM) respectively. The effect of the crosslink density on the CM foaming by varying curing time, curing temperature and crosslink agent revealed that there must be a minimum crosslink density attained in the vulcanizates for its effective foaming. However, when increasing the crosslink density of the vulvanizates beyond the sufficient crosslink density needed for foaming, the average cell sizes of the foams decreased and cell density increased. Expansion of the foams reduce its mechanical properties whereas increase of crosslink density of the matrix improved the mechanical properties. The existence of carbon black caused a decrease in average cell size and increase in cell density for the CM foams, resulting significant increase in mechanical properties of CM foams with increase of carbon black content. The observed phenomenon is attributed with good reinforcing behavior of carbon black to the CM foams.

Journal

Journal of Polymer ResearchSpringer Journals

Published: Oct 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off