Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization

Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization The curvature of gas–liquid interfaces and the step change in properties across these interfaces in microchannels are shown here to create a powerful lens/mirror effect. In a hydrophilic system, light incident on the bubble is focused into the surrounding liquid, resulting in a locally increased total light exposure. The optical phenomena leading to this are discussed, and the effect is demonstrated experimentally by imaging the increased photobleaching rate of fluorophores in the near-bubble region. Numerical simulations of the system are performed to investigate the electrical potential and flow fields resulting from the application of an axial electric field. Microbubble lensing-induced photobleaching (μ-BLIP) is then applied as a method to inject a negative scalar flow marker for flow visualization in microchannels. Once formed, the electrokinetic transport of this marker is analyzed to determine the cross-channel velocity profile of the liquid phase and the liquid velocity in the film. Experimental data is verified by comparison with numerical predictions and previous experimental studies. This contribution represents both a new application of microscale gas–liquid interfacial phenomena, and a new technique for microfluidic flow visualization, particularly applicable (though not limited) to the study of multiphase microchannel flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization

Loading next page...
 
/lp/springer_journal/microbubble-lensing-induced-photobleaching-blip-with-application-to-xALO2GQ3X7
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0645-6
Publisher site
See Article on Publisher Site

Abstract

The curvature of gas–liquid interfaces and the step change in properties across these interfaces in microchannels are shown here to create a powerful lens/mirror effect. In a hydrophilic system, light incident on the bubble is focused into the surrounding liquid, resulting in a locally increased total light exposure. The optical phenomena leading to this are discussed, and the effect is demonstrated experimentally by imaging the increased photobleaching rate of fluorophores in the near-bubble region. Numerical simulations of the system are performed to investigate the electrical potential and flow fields resulting from the application of an axial electric field. Microbubble lensing-induced photobleaching (μ-BLIP) is then applied as a method to inject a negative scalar flow marker for flow visualization in microchannels. Once formed, the electrokinetic transport of this marker is analyzed to determine the cross-channel velocity profile of the liquid phase and the liquid velocity in the film. Experimental data is verified by comparison with numerical predictions and previous experimental studies. This contribution represents both a new application of microscale gas–liquid interfacial phenomena, and a new technique for microfluidic flow visualization, particularly applicable (though not limited) to the study of multiphase microchannel flows.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 27, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off