Microbubble drag reduction in rough walled turbulent boundary layers with comparison against polymer drag reduction

Microbubble drag reduction in rough walled turbulent boundary layers with comparison against... Experiments were conducted in the 12-inch diameter tunnel at the Applied Research Laboratory, Pennsylvania State University using the tunnel wall boundary layer to determine the influence of surface roughness on microbubble drag reduction. To accomplish this, carbon dioxide was injected through a slot at rates of 0.001 m3/s to 0.011 m3/s, and the resulting skin friction drag measured on a 317.5-mm long by 152.4-mm span balance. In addition to the hydrodynamically smooth balance plate, additional plates were covered with roughly 75, 150, and 300 micron grit. Over the speed range tested of 7.6, 10.7, and 13.7 m/s, the roughness ranged from smooth to fully rough. Not only was microbubble drag reduction achieved over the rough surfaces, but the % drag reduction at a given gas flow rate was larger for larger roughness. Scaling of the data is discussed. Comparison against results of a polymer drag reduction experiment, using the same facility, is made. Finally, a measure of the expected persistence of the phenomenon is given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Microbubble drag reduction in rough walled turbulent boundary layers with comparison against polymer drag reduction

Loading next page...
 
/lp/springer_journal/microbubble-drag-reduction-in-rough-walled-turbulent-boundary-layers-iseHqPqbUL
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0863-6
Publisher site
See Article on Publisher Site

Abstract

Experiments were conducted in the 12-inch diameter tunnel at the Applied Research Laboratory, Pennsylvania State University using the tunnel wall boundary layer to determine the influence of surface roughness on microbubble drag reduction. To accomplish this, carbon dioxide was injected through a slot at rates of 0.001 m3/s to 0.011 m3/s, and the resulting skin friction drag measured on a 317.5-mm long by 152.4-mm span balance. In addition to the hydrodynamically smooth balance plate, additional plates were covered with roughly 75, 150, and 300 micron grit. Over the speed range tested of 7.6, 10.7, and 13.7 m/s, the roughness ranged from smooth to fully rough. Not only was microbubble drag reduction achieved over the rough surfaces, but the % drag reduction at a given gas flow rate was larger for larger roughness. Scaling of the data is discussed. Comparison against results of a polymer drag reduction experiment, using the same facility, is made. Finally, a measure of the expected persistence of the phenomenon is given.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off