Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis

Microbial starch-binding domains as a tool for targeting proteins to granules during starch... Modification of starch biosynthesis pathways holds an enormous potential for tailoring granules or polymers with new functionalities. In this study, we explored the possibility of engineering artificial granule-bound proteins, which can be incorporated in the granule during biosynthesis. The starch-binding domain (SBD)-encoding region of cyclodextrin glycosyltransferase from Bacillus circulans was fused to the sequence encoding the transit peptide (amyloplast entry) of potato granule-bound starch synthase I (GBSS I). The synthetic gene was expressed in the tubers of two potato cultivars (cv. Kardal and cv. Karnico) and one amylose-free (amf) potato mutant. SBDs accumulated inside starch granules, not at the granule surface. Amylose-free granules contained 8 times more SBD (estimated at ca. 1.6% of dry weight) than the amylose-containing ones. No consistent differences in physicochemical properties between transgenic SBD starches and their corresponding controls were found, suggesting that SBD can be used as an anchor for effector proteins without having side-effects. To test this, a construct harbouring the GBSS I transit peptide, the luciferase reporter gene, a PT-linker, and the SBD (in frame), and a similar construct without the linker and the SBD, were introduced in cv. Kardal. The fusion protein accumulated in starch granules (with retainment of luciferase activity), whereas the luciferase alone did not. Our results demonstrate that SBD technology can be developed into a true platform technology, in which SBDs can be fused to a large choice of effector proteins to generate potato starches with new or improved functionalities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis

Loading next page...
Kluwer Academic Publishers
Copyright © 2003 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial