Microarray Profiling of Plastid Gene Expression in a Unicellular Red Alga, Cyanidioschyzon merolae

Microarray Profiling of Plastid Gene Expression in a Unicellular Red Alga, Cyanidioschyzon merolae Plastid genomes of red algae contain more genes than those of green plant lineages, and it is of special interest that four transcription factors derived from ancestral cyanobacteria are encoded therein. However, little is known about transcriptional regulation of the red algal plastid genome. In this study, we constructed a red algal plastid DNA microarray of Cyanidioschyzon merolae covering almost all protein coding genes, and found that plastid genes are differentially activated by illumination. Run-on transcription assays using isolated plastids confirmed that activation takes place at the transcriptional level. In bacteria and plants, sigma factors determine the genes that are to be transcribed, and four plastid sigma factors (Cm_SIG1–4) encoded in the nuclear genome of C. merolae may be responsible for differential gene expression of the plastid genome. We found that transcripts for all Cm_SIG genes accumulated transiently after a shift from dark to light, whereas only the Cm_SIG2 transcript was increased after a shift from low to high light, suggesting that Cm_SIG2 is a sigma factor that responds to high light. Phylogenetic analysis of plastid sigma factors suggested that sigma factors of red and green algal plastids and the group 1 sigma factors of cyanobacteria form a monophyletic group. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Microarray Profiling of Plastid Gene Expression in a Unicellular Red Alga, Cyanidioschyzon merolae

Loading next page...
 
/lp/springer_journal/microarray-profiling-of-plastid-gene-expression-in-a-unicellular-red-SH8ovzPpys
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-0182-1
Publisher site
See Article on Publisher Site

Abstract

Plastid genomes of red algae contain more genes than those of green plant lineages, and it is of special interest that four transcription factors derived from ancestral cyanobacteria are encoded therein. However, little is known about transcriptional regulation of the red algal plastid genome. In this study, we constructed a red algal plastid DNA microarray of Cyanidioschyzon merolae covering almost all protein coding genes, and found that plastid genes are differentially activated by illumination. Run-on transcription assays using isolated plastids confirmed that activation takes place at the transcriptional level. In bacteria and plants, sigma factors determine the genes that are to be transcribed, and four plastid sigma factors (Cm_SIG1–4) encoded in the nuclear genome of C. merolae may be responsible for differential gene expression of the plastid genome. We found that transcripts for all Cm_SIG genes accumulated transiently after a shift from dark to light, whereas only the Cm_SIG2 transcript was increased after a shift from low to high light, suggesting that Cm_SIG2 is a sigma factor that responds to high light. Phylogenetic analysis of plastid sigma factors suggested that sigma factors of red and green algal plastids and the group 1 sigma factors of cyanobacteria form a monophyletic group.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 24, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off