Microarray analysis of hepatic gene expression in gallstone-susceptible and gallstone-resistant mice

Microarray analysis of hepatic gene expression in gallstone-susceptible and gallstone-resistant mice Cholesterol gallstone disease affects 40 million Americans, and evidence indicates that there is a genetic component to human gallstone disease. In a mouse model of gallstone formation, where mice are fed a lithogenic diet, QTL analysis has been employed to identify the Lith 1 locus on Chromosome (Chr) 2. In order to identify genes in which the difference in expression is independent of factors other than strain-specific genotype, we employed microarray analysis of hepatic gene expression in gallstone-susceptible (C57L/J) and gallstone-resistant (AKR/J) mice. We observed 57 genes with consistent differential expression between C57L/J and AKR/J mice, including many cytochrome, antioxidant, and lipid peroxidation genes. Analysis of differentially expressed genes identified numerous genes involved in fatty acid metabolism. Northern analysis of selected lipid metabolic genes further confirmed the strain-specific differential expression. Literature searches of common regulatory elements within antioxidant systems identified the nuclear transcription factor Nrf2, which maps to the Lith 1 loci. Hepatic Nrf2 gene and protein expression is also increased in strain AKR/J, compared with C57L/J mice, identifying Nrf2 as a putative Lith 1 gallstone gene. These data indicate that microarray analysis may complement QTL analysis to identify systems of regulation and genotypic differences responsible for polygenic diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Microarray analysis of hepatic gene expression in gallstone-susceptible and gallstone-resistant mice

Loading next page...
 
/lp/springer_journal/microarray-analysis-of-hepatic-gene-expression-in-gallstone-QuYjw5H0dd
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2269-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial