Micro-bubbles generated on electrolytic arrays and matrices and released in a water channel

Micro-bubbles generated on electrolytic arrays and matrices and released in a water channel The feasibility of generating mono-disperse micro-bubbles by electrolysis in tap water using micro-fabricated devices was investigated towards the development of a high-density bubbler matrix. The effect of electrode geometry and size, as well as artificial nucleation sites, was tested using single and arrays of electrode pairs. The results indicated that circular electrode node shapes (as opposed to triangular or square nodes) nucleated bubbles from the node center and exhibited fewer instances of bubble coalescence and a higher bubble detachment frequency when operated with small anode–anode and cathode–cathode spacings. Artificial nucleation sites, produced by etching the surface of the electrodes, were shown to be able to limit nucleation to one site (though in some cases, bubbles formed underneath the dielectric layer), as well as to increase current efficiency. A device with thousands of electrode pairs (a matrix of nodes) was also fabricated in order to generate a bubble cloud close to the channel wall. At a flow speed of 14 cm/s, this device demonstrated the ability to generate a bubble cloud reasonably close to the wall 20 mm from the trailing edge of the matrix of nodes, with the void fraction peaking at 1 mm from the channel wall and returning to zero at 3 mm. It yielded efficiencies greater than similar thin-wire devices, but spurious bubbles formed on the device, indicating that additional work is needed to develop this technology in a matrix format. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Micro-bubbles generated on electrolytic arrays and matrices and released in a water channel

Loading next page...
 
/lp/springer_journal/micro-bubbles-generated-on-electrolytic-arrays-and-matrices-and-bKcDYJOjaD
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0950-3
Publisher site
See Article on Publisher Site

Abstract

The feasibility of generating mono-disperse micro-bubbles by electrolysis in tap water using micro-fabricated devices was investigated towards the development of a high-density bubbler matrix. The effect of electrode geometry and size, as well as artificial nucleation sites, was tested using single and arrays of electrode pairs. The results indicated that circular electrode node shapes (as opposed to triangular or square nodes) nucleated bubbles from the node center and exhibited fewer instances of bubble coalescence and a higher bubble detachment frequency when operated with small anode–anode and cathode–cathode spacings. Artificial nucleation sites, produced by etching the surface of the electrodes, were shown to be able to limit nucleation to one site (though in some cases, bubbles formed underneath the dielectric layer), as well as to increase current efficiency. A device with thousands of electrode pairs (a matrix of nodes) was also fabricated in order to generate a bubble cloud close to the channel wall. At a flow speed of 14 cm/s, this device demonstrated the ability to generate a bubble cloud reasonably close to the wall 20 mm from the trailing edge of the matrix of nodes, with the void fraction peaking at 1 mm from the channel wall and returning to zero at 3 mm. It yielded efficiencies greater than similar thin-wire devices, but spurious bubbles formed on the device, indicating that additional work is needed to develop this technology in a matrix format.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 19, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off