Micellar effect on pentavalent vanadium oxidation of formaldehyde to formic acid in aqueous acid media at room temperature

Micellar effect on pentavalent vanadium oxidation of formaldehyde to formic acid in aqueous acid... The kinetics of oxidation of formaldehyde by pentavalent vanadium in 3.0 mol dm−3 H2SO4, at 313 K, under pseudo first-order conditions [Formaldehyde]T ≫ [V(V)]T, have been studied by UV–visible spectrophotometry. Two representative non-functional surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylene octyl phenyl ether, TX-100), at concentrations above and below their critical micelle concentrations (CMC), were used as micro-heterogeneous catalysts in this oxidation. The reaction rate and selectivity strongly depend on the surfactant used, and sometimes on surfactant concentration also. The CMC for both surfactants in aqueous media were determined by spectrofluorimetry, from the sharp change in fluorescence intensity. In contrast with TX-100, SDS was an excellent catalyst of oxidation of formaldehyde by vanadium(V) in aqueous micellar media, leading to the corresponding oxidation product. Formic acid was detected by 1H NMR spectroscopy. Formation of aggregates by the catalytic surfactants under the reaction conditions was studied by scanning electron microscopy. Dynamic light scattering was used to characterize shape changes during oxidation, by monitoring changes in the hydrodynamic diameter (D h = 2R h, where R h is hydrodynamic radius) of aggregates. A mechanism proposed for this micelle-catalysed slow oxidation reaction was entirely supported by our experimental results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Micellar effect on pentavalent vanadium oxidation of formaldehyde to formic acid in aqueous acid media at room temperature

Loading next page...
 
/lp/springer_journal/micellar-effect-on-pentavalent-vanadium-oxidation-of-formaldehyde-to-HP82ANFDc3
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1635-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial